SummaryThis study discusses improvement of popular rice varieties under drought through the identification and marker-assisted introgression of drought yield QTLs without any adverse effect on yield under normal conditions.
Listeria adhesion protein (LAP), an alcohol acetaldehyde dehydrogenase (lmo1634), interacts with host-cell receptor Hsp60 to promote bacterial adhesion during the intestinal phase of Listeria monocytogenes infection. The LAP homologue is present in pathogens (L. monocytogenes, L. ivanovii) and non-pathogens (L. innocua, L. welshimeri, L. seeligeri); however, its role in nonpathogens is unknown. Sequence analysis revealed 98 % amino acid similarity in LAP from all Listeria species. The N-terminus contains acetaldehyde dehydrogenase (ALDH) and the Cterminus an alcohol dehydrogenase (ADH). Recombinant LAP from L. monocytogenes, L. ivanovii, L. innocua and L. welshimeri exhibited ALDH and ADH activities, and displayed strong binding affinity (K D 2-31 nM) towards Hsp60. Flow cytometry, ELISA and immunoelectron microscopy revealed more surface-associated LAP in pathogens than non-pathogens. Pathogens exhibited significantly higher adhesion (P,0.05) to Caco-2 cells than non-pathogens; however, pretreatment of bacteria with Hsp60 caused 47-92 % reduction in adhesion only in pathogens. These data suggest that biochemical properties of LAP from pathogenic Listeria are similar to those of the protein from non-pathogens in many respects, such as substrate specificity, immunogenicity, and binding affinity to Hsp60. However, protein fractionation analysis of extracts from pathogenic and non-pathogenic Listeria species revealed that LAP was greatly reduced in intracellular and cell-surface protein fractions, and undetectable in the extracellular milieu of nonpathogens even though the lap transcript levels were similar for both. Furthermore, a LAP preparation from L. monocytogenes restored adhesion in a lap mutant (KB208) of L. monocytogenes but not in L. innocua, indicating possible lack of surface reassociation of LAP molecules in this bacterium. Taken together, these data suggest that LAP expression level, cellsurface localization, secretion and reassociation are responsible for LAP-mediated pathogenicity and possibly evolved to adapt to a parasitic life cycle in the host.
BackgroundRice (Oryza sativa L.) is a highly drought sensitive crop, and most semi dwarf rice varieties suffer severe yield losses from reproductive stage drought stress. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL) that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge.Methodology/Principal FindingsTwo pairs of backcross inbred lines (BILs) from a cross between drought-tolerant donor Aday Sel and high-yielding but drought-susceptible rice variety IR64 were produced. From six BC4F3 mapping populations produced by crossing the +QTL BILs with the −QTL BILs and IR64, four major-effect QTL - one each on chromosomes 2, 4, 9, and 10 - were identified. Meta-analysis of transcriptome data from the +QTL/−QTL BILs identified differentially expressed genes (DEGs) significantly associated with QTL on chromosomes 2, 4, 9, and 10. Physiological characterization of BILs showed increased water uptake ability under drought. The enrichment of DEGs associated with root traits points to differential regulation of root development and function as contributing to drought tolerance in these BILs. BC4F3-derived lines with the QTL conferred yield advantages of 528 to 1875 kg ha−1 over IR64 under reproductive-stage drought stress in the targeted ecosystems of South Asia.Conclusions/SignificanceGiven the importance of rice in daily food consumption and the popularity of IR64, the BC4F3 lines with multiple QTL could provide higher livelihood security to farmers in drought-prone environments. Candidate genes were shortlisted for further characterization to confirm their role in drought tolerance. Differential yield advantages of different combinations of the four QTL reported here indicate that future research should include optimizing QTL combinations in different genetic backgrounds to maximize yield advantage under drought.
BackgroundSelection for grain yield under drought is an efficient criterion for improving the drought tolerance of rice. Recently, some drought-tolerant rice varieties have been developed using this selection criterion and successfully released for cultivation in drought-prone target environments. The process can be made more efficient and rapid through marker-assisted breeding, a well-known fast-track approach in crop improvement. QTLs have been identified for grain yield under drought with large effects against drought-susceptible varieties. Most of the identified QTLs show large QTL × environment or QTL × genetic background interactions. The development of mapping populations in the background of popular high-yielding varieties, screening across environments, including the target environments, and the identification of QTLs with a consistent effect across environments can be a suitable alternative marker-assisted breeding strategy. An IR74371-46-1-1 × Sabitri backcross inbred line population was screened for reproductive-stage drought stress at the International Rice Research Institute, Philippines, and Regional Agricultural Research Station, Nepalgunj, Nepal, in the dry and wet seasons of 2011, respectively. A bulk segregant analysis approach was used to identify markers associated with high grain yield under drought.ResultsA QTL, qDTY12.1, significantly associated with grain yield under reproductive-stage drought stress was identified on chromosome 12 with a consistent effect in two environments: IRRI, Philippines, and RARS, Nepalgunj, Nepal. This QTL explained phenotypic variance of 23.8% and contributed an additive effect of 45.3% for grain yield under drought. The positive QTL allele for qDTY12.1 was contributed by tolerant parent IR74371-46-1-1.ConclusionsIn this study, qDTY12.1 showed a consistent effect across environments for high grain yield under lowland reproductive-stage drought stress in the background of popular high-yielding but drought-susceptible recipient variety Sabitri. qDTY12.1 was also reported previously [Crop Sci 47:507–516, 2007] to increase grain yield under upland reproductive-stage drought stress situations. qDTY12.1 is the only QTL reported so far in rice to have shown a large effect against multiple recipient genetic backgrounds as well as under highly diverse upland and lowland rice ecosystems. qDTY12.1 can be successfully introgressed to improve grain yield under drought of popular high-yielding but drought-susceptible lowland as well as upland adapted varieties following marker-assisted breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.