In Mn1−xZnxFe2O4 (x=0 to 1) nanosize particles prepared through hydrothermal precipitation we observe a decrease in particle size from 13 to 4 nm with increasing Zn concentration from 0 to 1. The lattice constant, a, for all Mn/Zn concentrations is found to be less than that for the corresponding bulk values. At specific compositions within x=0.35 and 0.5, the temperature dependence of the magnetization exhibits a cusp-like behavior below the temperature at which the nanoparticles undergo a ferri- to para-magnetic transition (Tc). The Curie temperatures, Tc, of the nanoparticles are in the range of 175–500 °C, which are much higher than their corresponding bulk values. To explain these unusual features, the strong preferential occupancy of cations in chemically inequivalent A and B sites and the metastable cation distribution in nanoparticles are invoked.
Microstructure and magnetic properties of monodispersed pseudocubic and trapezoidal particles with varying sizes prepared through the hydrothermal precipitation route are reported. The coercivity for trapezoidal particles was similar to that of reported values. For pseudocubic particles, however, the coercivity is unusually high (∼6 kOe) as compared to the maximum value (3 kOe) reported in the literature. Detailed microstructural analysis revealed that particles with a well-defined shape are, in fact, polycrystalline. The high coercivity and its variation with particle shape and size are correlated to the internal nanostructure of the particles.
Nanosize particles (average size ∼12 nm) of mixed ferrite Mn0.65Zn0.35Fe2O4 were prepared by the hydrothermal precipitation route and studied using x-ray diffraction, transmission electron microscopy, differential scanning calorimetry, magnetization measurements, and Mössbauer spectroscopy. The as-prepared sample was largely ferrimagnetic and, as the sample was annealed at temperatures above 250 °C, it gradually became superparamagnetic. This unexpected behavior is explained by assuming that the cation distribution in the nanosize as-prepared sample is in a metastable state and, as the sample is heated, this distribution changes to a more stable state while the grain size remains nearly the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.