This article examines the influence of thermophoresis, Brownian motion of the nanoparticles with variable stream conditions in the presence of magnetic field on mixed convection heat and mass transfer in the boundary layer region of a semi-infinite porous vertical plate in a nanofluid under the convective boundary conditions. The transformed boundary layer ordinary differential equations are solved numerically using Maple 18 software with fourth-fifth order Runge-Kutta-Fehlberg method. Numerical results are presented both in tabular and graphical forms illustrating the effects of these parameters with magnetic field on momentum, thermal, nanoparticle volume fraction and solutal concentration boundary layers. The numerical results obtained for the velocity, temperature, volume fraction, and concentration profiles reveal interesting phenomenon, some of these qualitative results are presented through plots. It is interesting to note that the magnetic field plays a dominant role on nanofluid flow under the convective boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.