A material-tailored special concrete composite that uses a synthetic fiber to make the concrete ductile and imposes strain-hardening characteristics with eco-friendly ingredients is known as an “engineered geopolymer composite (EGC)”. Mix design of special concrete is always tedious, particularly without standards. Researchers used several artificial intelligence tools to analyze and design the special concrete. This paper attempts to design the material EGC through an artificial neural network with a cross-validation technique to achieve the desired compressive and tensile strength. A database was formulated with seven mix-design influencing factors collected from the literature. The five best artificial neural network (ANN) models were trained and analyzed. A gradient descent momentum and adaptive learning rate backpropagation (GDX)–based ANN was developed to cross-validate those five best models. Upon regression analysis, ANN [2:16:16:7] model performed best, with 74% accuracy, whereas ANN [2:16:25:7] performed best in cross-validation, with 80% accuracy. The best individual outputs were “tacked-together” from the best five ANN models and were also analyzed, achieving accuracy up to 88%. It is suggested that when these seven mix-design influencing factors are involved, then ANN [2:16: 25:7] can be used to predict the mix which can be cross-verified with GDX-ANN [7:14:2] to ensure accuracy and, due to the few mix trials required, help design the SHGC with lower costs, less time, and fewer materials.
The main disadvantage of using concrete, which is accepted to be irreplaceable building material, is the formation of micro cracks. This is due to the fact that concrete is weak in tension. To arrest the microcracks developed in the concrete and to eliminate the drawbacks due to microcracks, the recent trend in the innovation of the concrete is the usage of self-healing concrete or bacterial concrete. It is based on the principle that; the bacteria present in the moisture of the concrete repairs or heals the cracks on the concrete. Another recent advancement in the field of concrete technology is the usage of the fibres in the concrete. It not only arrests the cracks in the concrete but also increases the strength and durability characteristics and also it reduces the quantity of cement to some extent. This paper tries to attempt the usage of hybrid fibres along with the self-healing concrete to enhance the desirable characteristics of hybrid fibres as well as bacterial concrete. This experimental programme investigates the concrete on its strength and durability characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.