Aluminum silicon carbide Metal Matrix Composites (Al-MMC) are widely used in aeronautical and automobile industries due to their excellent mechanical and physical properties. However the harder reinforcement particles make machining difficult. Tool wear occurs more quickly and reduces the life of the tool. This paper presents the experimental investigation on turning A356 matrix metal reinforced with 20 % by weight of Silicon carbide (SiC) particles, fabricated in house by stir casting. Fabricated samples were turned on medium duty lathe with Poly crystalline Diamond (PCD) inserts of 1300 and 1500 grade exposed to various cutting conditions. Parameters such as power consumed by main spindle, machined surface roughness and tool wear are studied. Scanning Electron Microscope (SEM) images support the result. It is evident that, surface finish, and power consumed are good for 1500 grade when compared with 1300 grade at higher cutting speed and tool wear is strongly dependent on the abrasive hard reinforcement particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.