The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden variation in applied load. Any fault in the transmission system could lead to the catastrophic failures hence need for this work. This paper deals with the identification of various fault conditions that happen in a transmission system using vibration signals acquired by an accelerometer. The acquired signals are processed to extract the statistical and spectral features. These features are used to build a machine learning model using decision tree or Random forest algorithm. The best combination of features and algorithm is evaluated and the results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.