The existence of a finite basis of algebraically independent one-loop integrals has underpinned important developments in the computation of one-loop amplitudes in field theories and gauge theories, in particular. We give an explicit construction reducing integrals with massless propagators to a finite basis for planar integrals at two loops, both to all orders in the dimensional regulator , and also when all integrals are truncated to OðÞ. We show how to reorganize integration-by-parts equations to obtain elements of the first basis efficiently, and how to use Gram determinants to obtain additional linear relations reducing this all-orders basis to the second one. The techniques we present should apply to nonplanar integrals, to integrals with massive propagators, and beyond two loops as well.
The Mathematica toolkit AMBRE derives Mellin-Barnes (MB) representations for Feynman integrals in d = 4 − 2ε dimensions. It may be applied for tadpoles as well as for multi-leg multi-loop scalar and tensor integrals. AMBRE uses a loop-byloop approach and aims at lowest dimensions of the final MB representations. The present version of AMBRE works fine for planar Feynman diagrams. The output may be further processed by the package MB for the determination of its singularity structure in ε. The AMBRE package contains various sample applications for Feynman integrals with up to six external particles and up to four loops.
For the investigation of higher order Feynman integrals, potentially with tensor structure, it is highly desirable to have numerical methods and automated tools for dedicated, but sufficiently 'simple' numerical approaches. We elaborate two algorithms for this purpose which may be applied in the Euclidean kinematical region and in d = 4 − 2ε dimensions. One method uses Mellin-Barnes representations for the Feynman parameter representation of multi-loop Feynman integrals with arbitrary tensor rank. Our Mathematica package AMBRE has been extended for that purpose, and together with the packages MB (M. Czakon) or MBresolve (A. V. Smirnov and V. A. Smirnov) one may perform automatically a numerical evaluation of planar tensor Feynman integrals. Alternatively, one may apply sector decomposition to planar and non-planar multi-loop ε-expanded Feynman integrals with arbitrary tensor rank. We automatized the preparations of Feynman integrals for an immediate application of the package sector_decomposition (C. Bogner and S. Weinzierl) so that one has to give only a proper definition of propagators and numerators. The efficiency of the two implementations, based on Mellin-Barnes representations and sector decompositions, is compared. The computational packages are publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.