Moist tropical forests in Amazonia and elsewhere are subjected to increasingly severe drought episodes through the El Niño–Southern Oscillation (ENSO) and possibly through deforestation‐driven reductions in rainfall. The effects of this trend on tropical forest canopy dynamics, emissions of greenhouse gases, and other ecological functions are potentially large but poorly understood. We established a throughfall exclusion experiment in an east‐central Amazon forest (Tapajós National Forest, Brazil) to help understand these effects. After 1‐year intercalibration period of two 1‐ha forest plots, we installed plastic panels and wooden gutters in the understory of one of the plots, thereby excluding ∼890 mm of throughfall during the exclusion period of 2000 (late January to early August) and ∼680 mm thus far in the exclusion period of 2001 (early January to late May). Average daily throughfall reaching the soil during the exclusion period in 2000 was 4.9 and 8.3 mm in the treatment and control plots and was 4.8 and 8.1 mm in 2001, respectively. During the first exclusion period, surface soil water content (0–2 m) declined by ∼100 mm, while deep soil water (2–11 m) was unaffected. During the second exclusion period, which began shortly after the dry season when soil water content was low, surface and deep soil water content declined by ∼140 and 160 mm, respectively. Although this depletion of soil water provoked no detectable increase in leaf drought stress (i.e., no reduction in predawn leaf water potential), photosynthetic capacity declined for some species, the canopy thinned (greater canopy openness and lower leaf area index) during the second exclusion period, stem radial growth of trees <15 m tall declined, and fine litterfall declined in the treatment plot, as did tree fruiting. Aboveground net primary productivity (NPP) (stemwood increment and fine litter production) declined by one fourth, from 15.1 to 11.4 Mg ha−1 yr−1, in the treatment plot and decreased slightly, from 11.9 to 11.5 Mg ha−1 yr−1, in the control plot. Stem respiration varied seasonally and was correlated with stem radial growth but showed no treatment response. The fastest response to the throughfall exclusion, and the surface soil moisture deficits that it provoked, was found in the soil itself. The treatment reduced N2O emissions and increased CH4 consumption relative to the control plot, presumably in response to the improved soil aeration that is associated with soil drying. Our hypothesis that NO emissions would increase following exclusion was not supported. The conductivity and alkalinity of water percolating through the litter layer and through the mineral soil to a depth of 200 cm was higher in the treatment plot, perhaps because of the lower volume of water that was moving through these soil layers in this plot. Decomposition of the litter showed no difference between plots. In sum, the small soil water reductions provoked during the first 2 years of partial throughfall exclusion were sufficient to lower aboveground NPP, including th...
Abstract. Understanding secondary successional processes in Amazonian terrestrial ecosystems is becoming increasingly important as continued deforestation expands the area that has become secondary forest, or at least has been through a recent phase of secondary forest growth. Most Amazonian soils are highly weathered and relatively nutrient poor, but the role of nutrients as a factor determining successional processes is unclear. Soils testing and chronosequence studies have yielded equivocal results regarding the possible role of nutrient limitation. The objective of this paper is to report the first two years' results of a nitrogen (N) and phosphorus (P) fertilization experiment in a 6-yr-old secondary forest growing on an abandoned cattle pasture on a clayey Oxisol. Growth of remnant grasses responded significantly to the N ϩ P treatment, whereas tree biomass increased significantly following N-only and N ϩ P treatments. The plants took up about 10% of the 50 kg P/ha of the first year's application, and recovery in soil fractions could account for the rest. The trees took up about 20% of the 100 kg N/ha of the first year's application. No changes in soil inorganic N, soil microbial biomass N, or litter decomposition rates have been observed so far, but soil faunal abundances increased in fertilized plots relative to the control in the second year of the study. A pulse of nitric oxide and nitrous oxide emissions was measured in the N-treated plots only shortly after the second year's application. Net N mineralization and net nitrification assays demonstrated strong immobilization potential, indicating that much of the N was probably retained in the large soil organic-N pool. Although P availability is low in these soils and may partially limit biomass growth, the most striking result of this study so far is the significant response of tree growth to N fertilization. Repeated fire and other losses of N from degraded pastures may render tree growth N limited in some young Amazonian forests. Changes in species composition and monitoring of long-term effects on biomass accumulation will be addressed as this experiment is continued.
Brazil has the world's highest annual area of tropical deforestation, and cattle ranching is the largest driver of deforestation in the Brazilian Amazon. Recent domestic and international market demand for beef and leather that are not linked to deforestation led the largest Brazilian meatpackers to adopt policies to reject supplies from ranches with recent deforestation. However, increased and sustained enforcement of such policies will be needed to reduce deforestation in these supply chains over the long-term. We sought to map the Brazilian cattle product supply chain to determine the proportion of the market, and of cattle production, that may be susceptible to market demands for deforestation-free supplies. Beef, leather and live animal exports are the most valuable products from the cattle industry, with export values tripling between 2001 and 2009, and with China, Russia and the U.S. as the largest importing countries. The markets for dairy and tallow (beef fat) are predominantly domestic. We find that around 40% of beef and 85% of leather production serve markets that have expressed concerns over environmental impacts of their purchases, while the clandestine market, which is not susceptible to market environmental demands, is estimated to comprise about one quarter of the Brazilian cattle slaughter. Demand for Brazilian cattle products is growing, and while market-driven efforts to reduce deforestation linked to legal slaughter have shown success, improved governance and other measures will be needed to tackle the environmental impacts of the clandestine industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.