Abstract. Selective Laser Melting (SLM) is an Additive Manufacturing (AM) technique that built 3D part in a layer-by-layer method by melting the top surface layer of a powder bed with a high intensity laser according to sliced 3D CAD data. AlSi10Mg alloy is a traditional cast alloy that is broadly used for die-casting process and used in automotive industry due its good mechanical properties. This paper seeks to investigate the requirement SLM in rapid tooling application. The feasibility study is done by examining the surface roughness and dimensional accuracy as compared to the benchmark part produced through the SLM process with constant parameters. The benchmark produced by SLM shows the potential of SLM in a manufacturing application particularly in moulds.
Abstract-Selective Laser Melting (SLM) is an advance Additive Manufacturing (AM) technique in which a component is manufacturing in a layer by layer manner by melting the top surface of a powder bed with a high intensity laser according to sliced 3D CAD data. AlSi10Mg alloy is a traditional cast alloy that is often used for die-casting. Because of its good mechanical and other properties, this alloy has been widely used in the automotive industry. In this work, the effects on the relative density is investigated for SLM-produced AlSi10Mg parts on one factor at a time (OFAT) basis by keeping constant various parameters such as laser power, scanning speed and hatching distance. It is shown that AlSi10Mg parts produced by SLM having best relative density values are at 350 watt laser power, 1650 mm/s of scanning speed and hatching distance of 0.13mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.