BM@N (Baryonic Matter at the Nuclotron) is the fixed target experiment aimed to study nuclear matter in the relativistic heavy ion collisions at the Nuclotron accelerator in JINR. Detectors based on Gas Electron multipliers (GEM) have been identified as appropriate for the BM@N tracking system, which is located inside the BM@N analyzing magnet. The structure of the GEM detectors and the results of study of their characteristics are presented. The GEM detectors are integrated into the BM@N experimental setup and data acquisition system. The performance of the GEM tracking system in the first technical run with the deuteron beam is shortly reviewed.
BM@N (Baryonic Matter at the Nuclotron) is a fixed target experiment aimed to study nuclear matter in the relativistic heavy-ion collisions at the Nuclotron accelerator in JINR. The BM@N tracking system is based on Gas Electron Multipliers (GEM) detectors mounted inside the BM@N analyzing magnet. The Cathode Strip Chamber (CSC) is installed outside the magnet. The CSC is used for improvement of particles momentum identification. The structure of the GEM detectors and the CSC prototype and the results of study of their characteristics are presented. The GEM detectors and CSC are integrated into the BM@N experimental setup and data acquisition system. The results of first tests of the GEM tracking system and CSC in last runs are shortly reviewed.
A high-quality, low-cost ventilator, dubbed HEV, has been developed by the particle physics community working together with biomedical engineers and physicians around the world. The HEV design is suitable for use both in and out of hospital intensive care units, provides a variety of modes and is capable of supporting spontaneous breathing and supplying oxygen-enriched air. An external air supply can be combined with the unit for use in situations where compressed air is not readily available. HEV supports remote training and post market surveillance via a Web interface and data logging to complement standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the ventilation performance, especially the quality and accuracy of the pressure curves, reactivity of the trigger, measurement of delivered volume and control of oxygen mixing, delivering a global performance which will be applicable to ventilator needs beyond the COVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with a performance evaluation.
Abstract. BM@N is the fixed target experiment at the accelerator complex NICA-Nuclotron aimed to study nuclear matter in the relativistic heavy ion collisions. Triple-GEM detectors were identified as appropriate for the BM@N tracking system located inside the analyzing magnet. Seven GEM chambers are integrated into the BM@N experimental setup and data acquisition system. GEM construction, main characteristics and first obtained results of the GEM tracking system performance in the technical run with the deuteron beam are shortly reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.