The total volume of cellular porosity, which comprises pores, interpore partitions, and air-entrained pores, depends on the spatial packing of pores, size distribution, maximum and average size, their shape, and the thickness of interpore partitions. Interpore partitions contain gel and capillary pores, which have a significant impact on the total porosity, thus affecting the operating properties of aerated concrete. This paper presents the calculations of gel, capillary, air, and total porosity in non-autoclaved aerated concrete of average-density grades D100...D1200 for different cement hydration degrees (0.6; 0.8, and 1) and water-cement ratios (0.5; 0.6, and 0.7); calculations use the author-developed methodology. Cement consumption depends on the average-density grade as well as on cement hydration degree. Reducing the latter from 1 to 0.6 in D500 concrete raises cement consumption by 7.4 %; other grades have similar patterns. This is why aerated concrete should be conditioned to maximize the utilization of the binder by enabling its complete hydration. The amount of water in the mixture is what determines the cement consumption and the water-cement ratio, whereby the density of cement dough will not depend on the average-density grade provided that the hydration degree and the WC ratio are constant. The finding is that the ability of cement to form its own pore structure is crucial to D500 and D400 aerated concrete if the mixture has high initial water content.
-The paper presents practical aspects of experimental research and numerical modeling of stress-strain parameters of the proposed construction element -plastic tube concrete (PTC). The obtained experimental data indicating the loss of load-bearing capacity enabled one to perform finite element analysis and to examine equivalent stresses in the middle sections of the simulated specimens through Mohr theory. The resulting numerical dependences are well conformed with the experimental data and make it possible to give a calculated justification for the experimentally proven increase in the loadbearing capacity of a PTC structure with respect to a nonencased concrete structure. The established load-bearing capacity coupled with the low cost and availability of plastic tubes makes it possible to consider PTC as an effective construction approach for some elements of building framing erected in record-breaking time, in restricted construction areas and along with other obstacles complicating traditional concretebased building technology.
The current state of the market for the production of aerated concrete in the Russian Federation and its prospects are considered. Every year, the production of cellular concrete is constantly increasing due to the construction of new plants that produce the most advanced technologies with the use of modernized equipment. However, there are technological and prescription raw materials issues. Therefore, the development of new technologies for the production of cellular concrete products due to the improvement, modernization and development of fundamentally new technological methods is highly important. The technologies for producing multilayer cellular concrete designs with a variational structure are considered. This allows to get products with high performance that meets modern requirements for energy efficiency and durability. The method of layered pouring of a cellular concrete mixture into a form with removable partitions is proposed for creating a single-layer construction of cellular concrete with variable density over the section. The integral principle is shown from small ones at the periphery, to large ones in the middle of the block, taking into account the rheological characteristics of cellular concrete mixtures and the foaming time. They provide the possibility of obtaining a design with a smooth transition of the structural heat-insulating layer to the layer without seams, air gaps and other possible defects arising during the molding of three-layer structures from non-uniform materials.
We present a measurement of the cross section for production of two or more jets as a function of dijet mass, based on an integrated luminosity o f 8 6 p b ,1 collected with the Collider Detector at Fermilab. Our dijet mass spectrum is described within errors by next-to-leading order QCD predictions using CTEQ4HJ parton distributions, and is in good agreement with a similar measurement from the D; experiment. PACS numbers: 13.85. Rm, 12.38.Qk,
Results of the analysis of fullness of a database of the State Immovable Property Cadastre by data on borders and areas in the Belgorod region are given. These actions are considered in the light of the carried-out reform of the state cadastral account and the state registration of the rights for real estate and transactions with it according to the federal target program "Development of Uniform State System of Registration of the Rights and the Cadastral Accounting of Real Estate for the Period from 2014 to 2019".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.