A Monte Carlo code that performs detailed (i.e. event-by-event) simulation of the transport and energy loss of low-energy electrons (approximately 50-10 000 eV) in water in the liquid phase is presented. The inelastic model for energy loss is based on a semi-empirical dielectric-response function for the valence-shells of the liquid whereas an exchange corrected semi-classical formula was used for K-shell ionization. Following a methodology widely used for the vapour phase, we succeeded in parametrizing the dielectric cross-sections of the liquid in accordance with the Bethe asymptote, thus providing a unified approach for both phases of water and greatly facilitating the computations. Born-corrections at lower energies have been implemented in terms of a second-order perturbation term with a simple Coulomb-field correction and the use of a Mott-type exchange modification. Angular deflections were determined by empirical schemes established from vapour data. Electron tracks generated by the code were used to calculate energy- and interaction-point-kernel distributions at low electron energies in liquid water. The effect of various model assumptions (e.g., dispersion, Born-corrections, phase) on both the single-collision and slowing-down distributions is examined.
The objective of this study was to compare the transmission and the reflection scanning reading modes of radiochromic MD-55 films of a document scanner. The use of the red channel of the red-green-blue images results in measurement accuracy that did not differ between the two reading modes. On the other hand, the scanner uniformity and temporal stability, the long-term stability of the film readings and the dynamic range is superior using the reflection mode. The dynamic range of dose measurements can be extended up to least 500 Gy using the alternative color channels by both reading techniques. Similar backscattering dose factors close to high Z inhomogeneities were found using both scanning modes. In conclusion, the use of reflection scanning mode of MD55 films was superior to the traditionally used transmission mode.
A new Monte-Carlo code for event-by-event simulation of the transport of energetic non-relativistic protons (approximately 0.5-10 MeV) and all their secondary electrons (down to 1 Ry) in both the vapour and liquid phases of water is presented. A unified particle-water inelastic model for both phases of water has been developed based on experimental optical data and elements of the Bethe theory. The model applies to both electrons and heavy-charged particles and is particularly suitable for extension to other media of biological relevance (organic polymers, DNA, etc.). Condensed-phase effects are included in the liquid version (MC4L) by means of the dielectric functions which, essentially, substitute the oscillator-strength used in the vapour version (MC4V). The results in the form of radial dose distributions and spatially restricted linear energy transfer are presented and compared with the literature.
BackgroundRadiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk.Methods and MaterialsTwo volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation.ResultsTumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations.ConclusionsBy using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.