Few reports have examined the effects of adult bone marrow multipotent stromal cells (MSCs) on large animals, and no useful method has been established for MSC implantation. In this study, we investigate the effects of MSC infusion from the coronary vein in a swine model of chronic myocardial infarction (MI). MI was induced in domestic swine by placing beads in the left coronary artery. Bone marrow cells were aspirated and then cultured to isolate the MSCs. At 4 weeks after MI, MSCs labeled with dye (n ¼ 8) or vehicle (n ¼ 5) were infused retrogradely from the anterior interventricular vein without any complications. Left ventriculography (LVG) was performed just before and at 4 weeks after cell infusion. The ejection fraction (EF) assessed by LVG significantly decreased from baseline up to a follow-up at 4 weeks in the control group (Po0.05), whereas the cardiac function was preserved in the MSC group. The difference in the EF between baseline and follow-up was significantly greater in the MSC group than in the control group (Po0.05). The MSC administration significantly promoted neovascularization in the border areas compared with the controls (Po0.0005), though it had no affect on cardiac fibrosis. A few MSCs expressed von Willebrand factor in a differentiation assay, but none of them expressed troponin T. In quantitative gene expression analysis, basic fibroblast growth factor and vascular endothelial growth factor (VEGF) levels were significantly higher in the MSC-treated hearts than in the controls (Po0.05, respectively). Immunohistochemical staining revealed VEGF production in the engrafted MSCs. In vitro experiment demonstrated that MSCs significantly stimulated endothelial capillary network formation compared with the VEGF protein (Po0.0001). MSC infusion via the coronary vein prevented the progression of cardiac dysfunction in chronic MI. This favorable effect appeared to derive not from cell differentiation, but from enhanced neovascularization by angiogenic factors secreted from the MSCs.
Erythropoietin (EPO) has recently been shown to confer cardioprotective effects via angiogenesis and antiapoptosis. The administration of EPO after myocardial infarction (MI) reduces infarct size and improves cardiac function in small animals. The purpose of this study is to investigate the protective effects of EPO in porcine MI. Each animal in the EPO group received four injections of recombinant human EPO (rhEPO; 6000 U per injection) at 2-day intervals, starting after coronary occlusion. Animals in the control group received saline. Left ventriculography was performed just after coronary occlusion and at 28 days. Time-course changes in serum levels of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and fibroblast growth factor (FGF) were measured. The number of vessels was calculated, and the mRNA expressions of VEGF and insulin-like growth factor (IGF) were examined. Left ventricular function was similar between the groups. The numbers of cells positive for anti-α-smooth muscle actin, von Willebrand factor, and c-kit were significantly higher in the EPO group than in the controls (P < 0.05). The EPO group exhibited significantly higher HGF and FGF concentrations (P < 0.05) and higher expression of VEGF and IGF mRNA (P < 0.05) compared with the controls. In conclusion, EPO accelerates angiogenesis via the upregulation of systemic levels such as HGF and FGF, and the local expression of VEGF and IGF, in porcine MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.