Abstract. Ignition process of vegetation from a cylindrical flame radiation is examined using Koo and Pagni [1] model. The radiation flux is power-law decreasing with distance [2], while the ignition time increases exponentially. This last behavior yields a characteristic length of fuel ignition from a flame, inducing a percolation type phase transition.
Percolation and non-equilibrium front propagation in a two-dimensional network modeling wildfire spread is studied. The model includes two long-range interactions; a deterministic and a probabilistic one induced by firebrand emission. It includes also a time weighting process. Three weight-dependent regimes were found previously; dynamical, static, and non-propagative regime [12]. In the absence of probabilistic interaction, the percolation threshold dependence on the weight does not depend on the deterministic interaction. The dynamical regime is found to belong to the dynamical percolation universality class and the static regime to the random deposition class. In the presence of probabilistic interactions, a minimum percolation threshold is found due to the scaling effects. The dynamical exponents belong to a new universality class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.