The crystallization of CaCO3 in the presence of monolayer‐protected gold nanoparticles is investigated here. It is found that crystals of CaCO3 grow around the gold nanoparticles, which act as nucleation templates, resulting in metal–organic–inorganic hybrid materials (see Figure). Control of the shape (spherical or needle‐like) and polymorph (vaterite or aragonite) is also demonstrated.
After curative intent resection, locoregional control and survival of patients with intrahepatic cholangiocarcinoma were far from satisfactory. Further studies are needed to evaluate the potential benefit of adjuvant locoregional treatment such as radiotherapy for patients with high-risk factors (≥ T2b disease or R1 resection).
Neurotensin (NT) is a tridecapeptide that functions as a neurotransmitter and neuromodulator in the nervous system. To date, three different types of NT receptor (NTR), NTR1, NTR2 and NTR3, have been identified only in mammalian species. In the present study we isolated the cDNAs for an NTR1 and a novel NTR in the bullfrog brain, designated bfNTR1 and bfNTR4 respectively. bfNTR1 and bfNTR4 encode 422-and 399-amino acid residue proteins respectively. bfNTR1 has a 64% amino acid identity with mammalian NTR1, and 34-37% identity with mammalian NTR2. bfNTR4 exhibits 43% and 45-47% identity with mammalian NTR1 and NTR2 respectively. Both receptors are mainly expressed in the brain and pituitary. bfNTR1 triggers both CRE-luc, a protein kinase A (PKA)-specific reporter, and c-fos-luc, a PKC-specific reporter, activities, indicating that bfNTR1 can activate PKA-and PKC-linked signaling pathways. However, bfNTR4 appears to be preferentially coupled to the PKA-linked pathway as it induces a higher CRE-luc activity than c-fos-luc activity. bfNTRs exhibit different pharmacological properties as compared with mammalian NTRs. Mammalian NTR1 but not NTR2 responds to NT, whereas both bfNTR1 and bfNTR4 show a high sensitivity to NT. SR 48692 and SR 142948A, antagonists for mammalian NTR1 but agonists for mammalian NTR2, function as antagonists for both bfNTR1 and bfNTR4. In conclusion, this report provides the first molecular, pharmacological and functional characterization of two NTRs in a non-mammalian vertebrate. These data should help to elucidate the phylogenetic history of the G protein-coupled NTRs in the vertebrate lineage as well as the structural features that determine their pharmacological properties.
To initiate resistance switching phenomena, it is usually necessary to apply a strong electric field to a sample. This forming process poses very serious obstacles in real nanodevice applications. In unipolar resistance switching (URS), it is well known that the forming originates from soft dielectric breakdown. However, the forming in bipolar resistance switching (BRS) is poorly understood. In this study, we investigated the forming processes in Pt/Ta₂O₅/TaOx/Pt and Pt/TaOx/Pt nanodevices, which showed BRS and URS, respectively. By comparing the double- and single-layer systems, we were able to observe differences in the BRS and URS forming processes. Using computer simulations based on an 'interface-modified random circuit breaker network model', we could explain most of our experimental observations. This success suggests that the BRS forming in our Pt/Ta₂O₅/TaOx/Pt double-layer system can occur via two processes, i.e., polarity-dependent resistance switching in the Ta₂O₅ layer and soft dielectric breakdown in the TaOx layer. This forming mechanism can be used to improve the performance of BRS devices. For example, we could improve the endurance properties of Pt/Ta₂O₅/TaOx/Pt cells by using a small forming voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.