Here, correlated AFM and scanning Kelvin probe microscopy measurements with sub‐100 nm resolution on the phase‐separated active layer of polymer‐fullerene (MDMO‐PPV:PCBM) bulk heterojunction solar cells in the dark and under illumination are described. Using numerical modeling a fully quantitative explanation for the contrast and shifts of the surface potential in dark and light is provided. Under illumination an excess of photogenerated electrons is present in both the donor and acceptor phases. From the time evolution of the surface potential after switching off the light the contributions of free and trapped electrons can be identified. Based on these measurements the relative 3D energy level shifts of the sample are calculated. Moreover, by comparing devices with fine and coarse phase separation, it is found that the inferior performance of the latter devices is, at least partially, due to poor electron transport.
We present a numerical model for calculating current-voltage characteristics of polymer:fullerene bulk hetrojunction solar cells at different degrees of nanoscale phase separation. We show that the short-circuit current enhancement with finer phase separation is due to a reduction in bimolecular recombination caused by lateral movement of photogenerated electrons to the fullerene-rich phase. At high bias, vertical electron transport is enhanced and lateral movement is reduced, causing a significant field-dependent carrier extraction for coarse morphologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.