To establish a calibration method of optical performance in fluorescence microscopy, we fabricated a fluorescent nanometer-scale marker by combining a dry dye method for polymer film and fine lithography. The marker has a 50 nm line-and-space fluorescent pattern, finer than the optical diffraction limit. A spin-coated poly͑methyl methacrylate͒ thin film on a silicon wafer was densely doped with Rhodamine 6G using a simple vacuum process, named the vapor-transportation method, and then the pattern was formed on the film using electron-beam lithography. The figure accuracy of the fabricated marker was calibrated by electron microscopes. Using this marker, one can quantitatively evaluate the optical properties; i.e., the contrast-transfer function, the point-spread function, magnification, and so on. To show practical use of the marker, we demonstrated the evaluation of a fluorescent microscope system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.