Benzene hydrogenation was investigated in the presence of a surface monolayer consisting of Pt nanoparticles of different shapes (cubic and cuboctahedral) and tetradecyltrimethylammonium bromide (TTAB). Infrared spectroscopy indicated that TTAB binds to the Pt surface through a weak C-H...Pt bond of the alkyl chain. The catalytic selectivity was found to be strongly affected by the nanoparticle shape. Both cyclohexane and cyclohexene product molecules were formed on cuboctahedral nanoparticles, whereas only cyclohexane was produced on cubic nanoparticles. These results are the same as the product selectivities obtained on Pt(111) and Pt(100) single crystals in earlier studies. The apparent activation energy for cyclohexane production on cubic nanoparticles is 10.9 +/- 0.4 kcal/mol, while for cuboctahedral nanoparticles, the apparent activation energies for cyclohexane and cyclohexene production are 8.3 +/- 0.2 and 12.2 +/- 0.4 kcal/mol, respectively. These activation energies are lower, and corresponding turnover rates are three times higher than those obtained with single-crystal Pt surfaces.
Rough surfaces are characterized by fractal geometry using a modified two-variable Weierstrass–Mandelbrot function. The developed algorithm yields three-dimensional fractal surface topographies representative of engineering rough surfaces. This surface model is incorporated into an elastic-plastic contact mechanics analysis of two approaching rough surfaces. Closed form solutions for the elastic and plastic components of the total normal force and real contact area are derived in terms of fractal parameters, material properties, and mean surface separation distance. The effects of surface topography parameters and material properties on the total deformation force are investigated by comparing results from two- and three-dimensional contact analyses and elastic and elastic-perfectly plastic material behaviors. For normal contact of elastic-perfectly plastic silica surfaces and range of surface interference examined, the interfacial force is predominantly elastic and the real contact area is approximately one percent of the apparent contact area or less, depending on the mean interfacial distance. The analysis can be easily modified to account for anisotropic fractal surfaces and different material behaviors.
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.
Vascular smooth muscle cells (SMCs) play an important role in vascular remodeling. Heterogeneity and phenotypic changes in SMCs are usually accompanied by a morphological difference, i.e., elongated/spindle-like versus spread-out or epithelioid/rhomboid cell shapes. However, it is not known whether the cell shape directly regulates SMC proliferation, and what the underlying mechanisms are. In this study, microgrooves and micropatterned matrix islands were used to engineer the cell shape and investigate the associated biophysical and biological mechanisms. Compared to spread-out SMCs on nonpatterned surfaces, SMCs on micropatterned surfaces demonstrated elongated morphology, significantly lower cell and nucleus shape indexes, less spreading, a lower proliferation rate, and a similar response (but to a lesser extent) to platelet-derived growth factor, transforming growth factor-beta, and mechanical stretching. DNA microarray profiling revealed a lower expression of neuron-derived orphan receptor-1 (NOR-1) in elongated SMCs. Knocking down NOR-1 suppressed DNA synthesis in SMCs, suggesting that NOR-1 is a mediator of cell elongation effects. Regulation of DNA synthesis in SMCs by the cell shape alone and a decrease in DNA synthesis in the case of small cell spreading area were achieved by micropatterning SMCs on matrix islands of different shapes and spreading areas. Changes in the cell shape also affected the nucleus shape, whereas variations in the cell spreading area modulated the nucleus volume, indicating a possible link between nucleus morphology (both shape and volume) and DNA synthesis. The findings of this investigation provide insight into cell shape effects on cell structure and proliferation, and have direct implications for vascular pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.