Intensive research is underway worldwide to develop new conductive materials for applications in the power industry. Such tests aim to increase the electrical conductivity of materials for conductors and cables, thus increasing the current carrying capacity of the line and reducing the loss of electricity transmission. The scientific discovery of recent years, graphene, one of the allotropic types of carbon with very high electrical and thermal conductivity and mechanical strength, creates great opportunities for designing and producing new materials with above-standard operational properties. This project concentrates on developing technology for manufacturing aluminum-graphene and copper-graphene composites intended to be used to produce a new generation of power engineering conductors. In particular, we present the results of the research on the mechanical synthesis of aluminum-graphene and copper -graphene composites, as well as the results of the electric, mechanical, and structural properties of rods obtained after the extrusion process and wires after the drawing process.
All over the world, intensive research is being conducted on the development of new conductive materials to be used in power engineering. The objective of this research is to increase electrical conductivity in wire and cable materials, and consequently, to increase line current-carrying capacities and reduce losses in electric energy transfer. Today, the expectations in the power engineering sector concentrates on conductive materials with electrical conductivity higher than conductivity of base materials, i.e. aluminum. The scientific discovery of the recent years, graphene, one of carbon allotropic variants with a very high electrical and thermal conductivity and mechanical strength, creates great possibilities to design and manufacture new materials, with super-standard functional properties. Graphene, can be a new kind of “alloy additive” to aluminum, which can significantly change their electric and another properties.This article focuses attention on the possibilities of graphene and aluminum synthesis. The researches was made over the different methods of producing these materials, in particular: chemical synthesis consisting in the combination of liquid metal with graphene into a form suitable for further processing in the processes of forming into wires. The article presents the results of mechanical properties and structural studies of aluminum-graphene composites.
The individual sections, wiring and construction of electromagnet windings responsible for strong magnetic field impulses may be one application for hypoeutectic Cu-Ag alloys. High electrical properties and mechanical properties (tensile strength, yield strength, impact strength) as well as high heat, fatigue and rheological resistance are required for these kinds of applications due to the unique nature of such operations (strong vibrations of high frequency and amplitude resulting from Lorenz forces and the possibility of significant and rapid heating from Jule’s heat). The limited solubility of copper and silver in the solid state enables the effective modification of the alloys’ microstructure through heat treatment and further shaping of their high mechanical and electrical properties via cold plastic working. The article presents the manufacturing of Cu-Ag alloys with the weight percent of Ag between 3 and 7 using the continuous casting process along with research on the physicochemical, mechanical and electrical properties of the obtained casts. The research on the amount of plastic deformation and its influence on the wire drawing process and the mechanical and electrical properties of the wires is also discussed. The temperature coefficients of resistance were defined in order to determine the temperature influence on the electrical resistance changes dynamics. The microstructural analysis was carried out in the as-cast state. The preliminary research conducted indicates that the obtained Cu-Ag alloys in the as-cast state exhibit a set of high mechanical and electrical properties. The prospective next stage of research includes the selection of favourable heat treatment parameters which would provide optimally modified microstructure of the alloys, as well as determining the deformation coefficients allowing for further increases in the mechanical and electrical properties.
The subject of the work focuses on hardened-precipitation type alloys Al-Mg-Si which constitute the primary component material used to build homogeneous electric wires, type AAAC (All Aluminium Alloy Conductor). The material in consideration is a well-known and well-studied alloy, particularly in terms of the possibilities for using it in thermal treatment processes. However, the subject literature does not present a comprehensive recognition of the effect of heat treatment parameters on the set of mechanical and electrical properties in wires grade 6101. In particular, the study presents the results of experiments that show the possibility of controlling the AlMgSi wire properties by means of selecting the heat treatment parameters for simultaneously obtaining a high tensile strength and high electrical conductivity. Hence, the research described in this paper focuses mostly on determining the impact of the Mg and Si content on the electrical and mechanical properties of wires of Al-Mg-Si wire alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.