One of the open problems of modern data mining is clustering high dimensional data. For this in the paper a new technique called GAHDClustering is proposed, which works in two steps. First a GA-based feature selection algorithm is designed to determine the optimal feature subset; an optimal feature subset is consisting of important features of the entire data set next, a K-means algorithm is applied using the optimal feature subset to find the clusters. On the other hand, traditional K-means algorithm is applied on the full dimensional feature space. Finally, the result of GA-HDClustering is compared with the traditional clustering algorithm. For comparison different validity matrices such as Sum of squared error (SSE), Within Group average distance (WGAD), Between group distance (BGD), Davies-Bouldin index(DBI), are used .The GA-HDClustering uses genetic algorithm for searching an effective feature subspace in a large feature space. This large feature space is made of all dimensions of the data set. The experiment performed on the standard data set revealed that the GA-HDClustering is superior to traditional clustering algorithm.
Exploring novel computational methods in making sense of biological data has not only been a necessity, but also productive. A part of this trend is the search for more efficient in silico methods/tools for analysis of promoters, which are parts of DNA sequences that are involved in regulation of expression of genes into other functional molecules. Promoter regions vary greatly in their function based on the sequence of nucleotides and the arrangement of protein-binding short-regions called motifs. In fact, the regulatory nature of the promoters seems to be largely driven by the selective presence and/or the arrangement of these motifs. Here, we explore computational classification of promoter sequences based on the pattern of motif distributions, as such classification can pave a new way of functional analysis of promoters and to discover the functionally crucial motifs. We make use of Position Specific Motif Matrix (PSMM) features for exploring the possibility of accurately classifying promoter sequences using some of the popular classification techniques. The classification results on the complete feature set are low, perhaps due to the huge number of features. We propose two ways of reducing features. Our test results show improvement in the classification output after the reduction of features. The results also show that decision trees outperform SVM (Support Vector Machine), KNN (K Nearest Neighbor) and ensemble classifier LibD3C, particularly with reduced features. The proposed feature selection methods outperform some of the popular feature transformation methods such as PCA and SVD. Also, the methods proposed are as accurate as MRMR (feature selection method) but much faster than MRMR. Such methods could be useful to categorize new promoters and explore regulatory mechanisms of gene expressions in complex eukaryotic species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.