The present study had three goals: (i) to evaluate the relative quantities of aerosolized Bacillus atrophaeus spores deposited on the vertical, horizontal top, and horizontal bottom surfaces in a chamber; (ii) to assess the relative recoveries of the aerosolized spores from glass and stainless steel surfaces with a polyester swab and a macrofoam sponge wipe; and (iii) to estimate the relative recovery efficiencies of aerosolized B. atrophaeus spores and Pantoea agglomerans using a foam spatula at several different bacterial loads by aerosol distribution on glass surfaces. The majority of spores were collected from the bottom horizontal surface regardless of which swab type and extraction protocol were used. Swabbing with a macrofoam sponge wipe was more efficient in recovering spores from surfaces contaminated with high bioaerosol concentrations than swabbing with a polyester swab. B. atrophaeus spores and P. agglomerans culturable cells were detected on glass surfaces using foam spatulas when the theoretical surface bacterial loads were 2.88 ؋ 10 4 CFU and 8.09 ؋ 10 6 CFU per 100-cm 2 area, respectively. The median recovery efficiency from the surfaces using foam spatulas was equal to 9.9% for B. atrophaeus spores when the recovery was calculated relative to the theoretical surface spore load. Using a foam spatula permits reliable sampling of spores on the bioaerosol-exposed surfaces in a wide measuring range. The culturable P. agglomerans cells were recovered with a median efficiency of 0.001%, but staining the swab extracts with fluorescent dyes allowed us to observe that the viable cell numbers were higher by 1.83 log units than culturable organisms. However, additional work is needed to improve the analysis of the foam extracts in order to decrease the limit of detection of Bacillus spores and Gram-negative bacteria on contaminated surfaces.Surface sampling is performed on a frequent basis in all situations where clean environment monitoring is needed, e.g., in health care facilities and in the pharmaceutical industry and food industry. An anthrax bioterrorist event in the fall of 2001 has emphasized the importance of efficient sampling methods for detection of pathogenic microorganisms on surfaces within intentionally contaminated locations (22). Unfortunately, our knowledge on the most effective sampling methodology as well as the level of confidence we may have in the results obtained by wiping, swabbing, and other sample collection strategies is still limited (1). Moreover, in most of the studies performed so far, bacteria and/or spores were collected from test samples or coupons of various materials, inoculated with a suspension of microorganisms that had been placed and spread over the surface, and then dried (14, 15). This may not mimic the true situation of surface contamination by a pathogen that has been intentionally released. Edmonds et al. (12) recently reported lower swabbing efficiencies of different types of swab materials used for sampling glass, polycarbonate, and vinyl surfaces contaminat...
Aims: To develop a multiplex PCR assay for the detection of Salmonella enterica serovar Enteritidis in human faeces.
Methods and Results: A total of 54 Salmonella strains representing 19 serovars and non‐Salmonella strains representing 11 different genera were used. Five primer pairs were employed in the assay. Three of them targeted to the genes hilA, spvA and invA that encode virulence‐associated factors. A fourth primer pair amplified a fragment of a unique sequence within S. enterica serovar Enteritidis genomes. An internal amplification control (a fragment of a conservative sequence within the 16S rRNA genes) was targeted by a fifth primer pair. The assay produced two or three amplicons from the invA, hilA and 16S rRNA genes for 19 Salmonella serovars. All Salmonella and non‐Salmonella strains yielded a band of an internal amplification control. For S. enterica serovar Typhimurium, four products (the fourth from the spvA gene), and for S. enterica serovar Enteritidis five amplicons (the fifth from the sdf gene) were observed. S. enterica serovar Enteritidis was cultured from three of 71 rectal swabs from diarrhoeal patients. Five specific amplicons were generated with the multiplex PCR assay only from culture‐positive faecal samples.
Conclusion: The multiplex PCR assay specifically detects S. enterica serovar Enteritidis.
Significance and Impact of the Study: This is a novel multiplex PCR assay, which contains an internal amplification control and enables concurrent survey for Salmonella virulence genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.