SOLUTIONS (2013SOLUTIONS ( to 2018) is a European Union Seventh Framework Programme Project (EU-FP7) that aims to deliver a solution-oriented conceptual framework for the evidence-based development of environmental policies with regard to water quality and its protection against contamination. This project will integrate innovative chemical and effect-based monitoring tools with a full set of exposure, effect and risk assessment models and strategies to assess abatement options. Uniquely, SOLUTIONS takes advantage of (i) expertise of leading European scientists of major FP6/FP7 projects on chemicals in the water cycle, (ii) access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and (iii) innovative approaches for stakeholder dialogue and support. In particular, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations will be directly supported with consistent guidance for the early detection, identification, prioritization, and abatement options for chemicals in the water cycle. A set of predictive models and tools will support stakeholders' management decisions by benefiting from the wealth of data generated from monitoring and chemical registration. SOLUTIONS will provide a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. Beyond state-of-the-art monitoring and management, tools will be elaborated allowing risk identification for aquatic ecosystems and human health. The SOLUTIONS approach will provide transparent and evidence-based suggestions of River Basin Specific Pollutants for the case study basins and support future review of priority pollutants under the WFD as well as potential abatement options.
Water quality standards for copper are usually stated in total element concentrations. It is known, however, that a major part of the copper can be bound in complexes that are biologically not available. Natural organic matter, such as humic and fulvic acids, are strong complexing agents that may affect the bioavailable copper (Cu2+) concentration. The aim of this study was to quantify the relation between the concentration of dissolved natural organic matter and free Cu2+ in surface waters, and the biological effect, as measured in a standardized ecotoxicological test (48 h-median effective concentration [EC50] Daphnia magna, mobility). Six typical Dutch surface waters and an artificial water, ranging from 0.1 to 22 mg/L dissolved organic carbon (DOC), were collected and analyzed quarterly. Chemical speciation modeling was used as supporting evidence to assess bioavailability. The results show clear evidence of a linear relation between the concentration of dissolved organic carbon (in milligrams DOC/L) and the ecotoxicological effect (as effect concentration, EC50, expressed as micrograms Cu/L): 48-h EC50 (Daphnia, mobility) = 17.2 x DOC + 30.2 (r2 = 0.80, n = 22). Except for a brook with atypical water quality characteristics, no differences were observed among water type or season. When ultraviolet (UV)-absorption (380 nm) was used to characterize the dissolved organic carbon, a linear correlation was found as well. The importance of the free copper concentration was demonstrated by speciation calculations: In humic-rich waters the free Cu2+ concentration was estimated at approximately 10(-11) M, whereas in medium to low dissolved organic carbon waters the [Cu2+] was approximately 10(-10) M. Speciation calculations performed for copper concentrations at the effective concentration level (where the biological effect is considered the same) resulted in very similar free copper concentrations (approximately 10(-8) M Cu) in these surface waters with different characteristics. These observations consistently show that the presence of organic matter decreases the bioavailability, uptake, and ecotoxicity of copper in the aquatic environment. It demonstrates that the DOC content must be included in site-specific environmental risk assessment for trace metals (at least for copper). It is the quantification of the effects described that allows policy makers to review the criteria for copper in surface waters.
Biological sensors are becoming more important to monitor the quality of the aquatic environment. In this paper the valve movement response of freshwater (Dreissena polymorpha) and marine (Mytilus edulis) mussels is presented as a tool in monitoring studies. Examples of various methods for data storage and data treatment are presented, elucidating easier operation and lower detection limits. Several applications are mentioned, including an early warning system based on this valve movement response of mussels.
Soluble silicates, commercially known as waterglass, are among the largest volume synthetic chemicals in the world. Silicon from waterglass is rapidly transformed to the biologically active orthosilicic acid (referred to as dissolved silicate). This paper aims to assess the impact of waterglass on the aquatic environment in Western Europe. The emission to surface waters from the four most relevant application areas, household detergents, pulp and paper production, water and wastewater treatment, and soil stabilization, is estimated to be ca. 88-121 kton of SiO2 per year. This is a small fraction (<2%) of the estimated total amount of dissolved silicate transported by rivers to the oceans. Locally, increases in dissolved silicate concentration will decrease the ratios of N:Si and P:Si, which could influence phytoplankton species composition and favor the growth of diatoms over other groups of algae. Significant adverse effects in aquatic ecosystems are not expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.