The harmful impact of air pollution has drawn raising concerns from ordinary citizens, researchers, policymakers, and smart city users. It is of great importance to identify air pollution levels at the spatial resolution on time so that its negative impact on human health and environment can be minimized. This paper proposed the CNN-BILSTM-IDW model, which aims to predict and spatially analyze the pollutant level in the study area in advance using past observations. The neural network-based Convolutional Bidirectional Long short-term memory (CNN-BILSTM) network is employed to perform time series prediction over the next four weeks. Inverse Distance Weighting (IDW) is utilized to perform spatial prediction. The proposed CNN-BILSTM-IDW model provides almost 16% better prediction performance than the ordinary IDW method, which fails to predict spatial prediction at a high temporal period. The results of the presented comparative analysis signify the efficiency of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.