Positron emission tomography (PET) and prompt gamma (PG) detection are promising proton therapy monitoring modalities. Fast calculation of the expected distributions is desirable for comparison to measurements and to develop/train algorithms for automatic treatment error detection. A filtering formalism was used for positron-emitter predictions and adapted to allow for its use for the beamline of any proton therapy centre. A novel approach based on a filtering formalism was developed for the prediction of energy-resolved PG distributions for arbitrary tissues. The method estimates PG yields and their energy spectra in the entire treatment field. Both approaches were implemented in a research version of the RayStation treatment planning system. The method was validated against PET monitoring data and Monte Carlo simulations for four patients treated with scanned proton beams. Longitudinal shifts between profiles from analytical and Monte Carlo calculations were within -1.7 and 0.9 mm, with maximum standard deviation of 0.9 mm and 1.1 mm, for positron-emitters and PG shifts, respectively. Normalized mean absolute errors were within 1.2 and 5.3%. When comparing measured and predicted PET data, the same more complex case yielded an average shift of 3 mm, while all other cases were below absolute average shifts of 1.1 mm. Normalized mean absolute errors were below 7.2% for all cases. A novel solution to predict positron-emitter and PG distributions in a treatment planning system is proposed, enabling calculation times of only a few seconds to minutes for entire patient cases, which is suitable for integration in daily clinical routine.
Purpose: We describe and demonstrate a fast analytical tool for prompt‐gamma emission prediction based on filter functions applied on the depth dose profile. We present the implementation in a treatment planning system (TPS) of the same algorithm for positron emitter distributions. Methods: The prediction of the desired observable is based on the convolution of filter functions with the depth dose profile. For both prompt‐gammas and positron emitters, the results of Monte Carlo simulations (MC) are compared with those of the analytical tool. For prompt‐gamma emission from inelastic proton‐induced reactions, homogeneous and inhomogeneous phantoms alongside with patient data are used as irradiation targets of mono‐energetic proton pencil beams. The accuracy of the tool is assessed in terms of the shape of the analytically calculated depth profiles and their absolute yields, compared to MC. For the positron emitters, the method is implemented in a research RayStation TPS and compared to MC predictions. Digital phantoms and patient data are used and positron emitter spatial density distributions are analyzed. Results: Calculated prompt‐gamma profiles agree with MC within 3 % in terms of absolute yield and reproduce the correct shape. Based on an arbitrary reference material and by means of 6 filter functions (one per chemical element), profiles in any other material composed of those elements can be predicted. The TPS implemented algorithm is accurate enough to enable, via the analytically calculated positron emitters profiles, detection of range differences between the TPS and MC with errors of the order of 1–2 mm. Conclusion: The proposed analytical method predicts prompt‐gamma and positron emitter profiles which generally agree with the distributions obtained by a full MC. The implementation of the tool in a TPS shows that reliable profiles can be obtained directly from the dose calculated by the TPS, without the need of full MC simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.