[1] Methods to detect tropical deep convective clouds and convective overshooting from measurements at the three water vapor channels (183.3 ± 1, 183.3 ± 3, and 183.3 ± 7 GHz) of the Advanced Microwave Sounding Unit-B (AMSU-B) are presented. Thresholds for the brightness temperature differences between the three channels are suggested as criterion to detect deep convective clouds, and an order relation between the differences is used to detect convective overshooting. The procedure is based on an investigation of the influence of deep convective cloud systems on the microwave brightness temperatures at frequencies from 89 to 220 GHz using simultaneous aircraft microwave and radar measurements over two tropical deep convective cloud systems, taken during the Tropical Rainfall Measuring Mission (TRMM) Large Scale Biosphere-Atmosphere Experiment (LBA) campaign. Two other aircraft cases with deep convective cloud systems observed during the Third Convection and Moisture Experiment (CAMEX-3) are used to validate the criteria. Furthermore, a microwave radiative transfer model and simulated mature tropical squall line data derived from the Goddard Cumulus Ensemble (GCE) model are used to validate the procedures and to adapt the criteria to the varying viewing angle of AMSU-B. These methods are employed to investigate the distributions of deep convective clouds and convective overshooting in the tropics (30°S to 30°N) for the four 3-month seasons from March 2003 to February 2004 using the AMSU-B data from NOAA-15, -16, and -17. The distributions show a seasonal variability of shifting from the winter hemisphere to the summer hemisphere. The distributions of deep convective clouds follow the seasonal patterns of the surface rainfall rates. The deep convective clouds over land penetrate more frequently into the tropical tropopause layer than those over ocean. The averaged deep convective cloud fraction is about 0.3% in the tropics, and convective overshooting contributes about 26% to this.Citation: Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements,
From December 1986 until April 1987 ground‐based microwave observations of the diurnal variation of mesospheric ozone were made over Bern, Switzerland. These data were of sufficient quality to define the characteristic diurnal behavior of the ozone mixing ratio during winter and equinoctial conditions. The observed diurnal variation of ozone peaks at ∼74 km, where its amplitude is about a factor of 6. At 65 km the observed diurnal variation is a factor of 3, whereas at 55 km it is only a factor of 1.4. One‐dimensional model calculations accurately reproduce the relative diurnal variation of ozone at equinox, suggesting that the model value of the ozone photolysis rate coefficient is accurate to better than 10%. For winter conditions, however, the model underpredicts the observed relative diurnal variation by a factor of 2; a major part of this discrepancy is due to an observed postmidnight increase in ozone. Various suggested changes in model parameters to better reproduce the ozone abundance vertical profile result in only small differences in the relative diurnal variation, indicating that these observations do not provide a sensitive test of the mesopheric chemistry controlling the abundance of odd oxygen.
Abstract. In polar regions, satellite microwave radiometry has not been successful in measuring the total water vapor (TWV) in the atmosphere. The difficulties faced in these regions arise from the very low water vapor burden of the atmosphere and the large and highly variable emissivities of ice surfaces in the microwave frequency range. By exploiting the advantages of the Special Sensor Microwave/Temperature 2 (SSM/T2), a method is developed to retrieve TWV over Antaxctica from satellite data. This method shows very low sensitivities to the change of surface emissivity and to the presence of water clouds. However, ice clouds may have considerable effects. Results of radiative transfer model simulation show that they may cause one to underestimate TWV using the proposed method and that the amount of underestimation is proportional to the ice water path of the ice cloud. Validations using radiosonde measurements and numerical model analyzes suggest that SSM/T2 retrievals have a high accuracy (maximum error < 10%) as long as TWV is <4.0kgm -2. Above this value, retrievals show a systematic overestimation.Presumably, this is a result of the seasonal difference between the validation and the training radiosonde data sets. TWV retrievals of 1 year's SSM/T2 data show clearly the seasonal variation of water vapor over Antarctica. Throughout the year the mean TWV over West Antarctica is nearly twice as high as that over East Antarctica; the temporal fluctuation of TWV over West Antarctica is also significantly stronger than over East Antarctica. This suggests that precipitation and water vapor transport in West Antarctica are more active than in East Antarctica. Using the same year's TWV data, we estimated the mean residence time of atmospheric water vapor over the Antarctica to be merely 3-4 days. This, however, is much shorter than the global mean of 9-10 days.
During a polarity transition of the Earth's magnetic field, the structure and strength of the field change significantly from their present values. This will alter the global pattern of charged particle precipitation into the atmosphere. Thus, particle precipitation is possible into regions that are at the moment effectively shielded by the Earth's magnetic field. A two‐dimensional global chemistry, photolysis and transport model of the atmosphere has been used to investigate how the increased particle precipitation affects the chemical composition of the middle and lower atmosphere. Ozone losses resulting from large energetic particle events are found to increase significantly, with resultant losses similar to those observed in the Antarctic ozone hole of the 1990s. This results in significant increases in surface UV‐B radiation as well as changes in stratospheric temperature and circulation over a period of several months after large particle events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.