We are interested in determining whether premature birth alters expression of counterregulatory cytokines which modulate lung inflammation. Production of proinflammatory cytokines tumor necrosis factor alpha. IL-1 beta, and IL-8 is regulated in part by the antiinflammatory cytokine IL-10. For preterm newborns with hyaline membrane disease, deficiencies in the ability of lung macrophages to express antiinflammatory cytokines may predispose to chronic lung inflammation. We compared the expression of pro- and antiinflammatory cytokines at the mRNA and protein level in the lungs of preterm and term newborns with acute respiratory failure from hyaline membrane disease or meconium aspiration syndrome. Four sequential bronchoalveolar lavage (BAL) samples were obtained during the first 96 h of life from all patients. All patients rapidly developed an influx of neutrophils and macrophages. Over time, cell populations in both groups became relatively enriched with macrophages. The expression of proinflammatory cytokine mRNA and/or protein was present in all samples from both patient groups. In contrast, IL-10 mRNA was undetectable in most of the cell samples from preterm infants and present in the majority of cell samples from term infants. IL-10 concentrations were undetectable in lavage fluid from preterm infants with higher levels in a few of the BAL samples from term infants. These studies demonstrate that 1) IL-10 mRNA and protein expression by lung inflammatory cells is related to gestational age and 2) during the first 96 h of life neutrophil cell counts and IL-8 expression decrease in BAL from term infants, but remain unchanged in BAL samples from preterm infants.
BackgroundBy altering specific developmental signaling pathways that are necessary for fetal lung development, perinatal nicotine exposure affects lung growth and differentiation, resulting in the offsprings' predisposition to childhood asthma; peroxisome proliferator-activated receptor gamma (PPARγ) agonists can inhibit this effect. However, whether the perinatal nicotine-induced asthma risk is restricted to nicotine-exposed offspring only; whether it can be transmitted to the next generation; and whether PPARγ agonists would have any effect on this process are not known.MethodsTime-mated Sprague Dawley rat dams received either placebo or nicotine (1 mg/kg, s.c.), once daily from day 6 of gestation to postnatal day (PND) 21. Following delivery, at PND21, generation 1 (F1) pups were either subjected to pulmonary function tests, or killed to obtain their lungs, tracheas, and gonads to determine the relevant protein markers (mesenchymal contractile proteins), global DNA methylation, histone 3 and 4 acetylation, and for tracheal tension studies. Some F1 animals were used as breeders to generate F2 pups, but without any exposure to nicotine in the F1 pregnancy. At PND21, F2 pups underwent studies similar to those performed on F1 pups.ResultsConsistent with the asthma phenotype, nicotine affected lung function in both male and female F1 and F2 offspring (maximal 250% increase in total respiratory system resistance, and 84% maximal decrease in dynamic compliance following methacholine challenge; P < 0.01, nicotine versus control; P < 0.05, males versus females; and P > 0.05, F1 versus F2), but only affected tracheal constriction in males (51% maximal increase in tracheal constriction following acetylcholine challenge, P < 0.01, nicotine versus control; P < 0.0001, males versus females; P > 0.05, F1 versus F2); nicotine also increased the contractile protein content of whole lung (180% increase in fibronectin protein levels, P < 0.01, nicotine versus control, and P < 0.05, males versus females) and isolated lung fibroblasts (for example, 45% increase in fibronectin protein levels, P < 0.05, nicotine versus control), along with decreased PPARγ expression (30% decrease, P < 0.05, nicotine versus control), but only affected contractile proteins in the male trachea (P < 0.05, nicotine versus control, and P < 0.0001, males versus females). All of the nicotine-induced changes in the lung and gonad DNA methylation and histone 3 and 4 acetylation were normalized by the PPARγ agonist rosiglitazone except for the histone 4 acetylation in the lung.ConclusionsGermline epigenetic marks imposed by exposure to nicotine during pregnancy can become permanently programmed and transferred through the germline to subsequent generations, a ground-breaking finding that shifts the current asthma paradigm, opening up many new avenues to explore.
Transforming growth factor-β (TGF-β) is a peptide implicated in tissue injury and repair but its role in the premature human lung remains unclear. In the present study, we used a TGF-β responsive-promoter-luciferase construct in mink lung epithelial cells to quantify levels of biologically active TGF-β (BA-TGF-β) in the endotracheal aspirate (ETA) fluid from 16 extremely low birthweight neonates [6 M/10 F, mean GA 26 weeks (range 23–30), mean BW 774 g (range 555–1,075)]. ETA fluid was obtained on day 1 and then every 4 days up to 32 days. BA-TGF-β levels were low (92 ± 19 pg/ml) in the first 24 h of life and then increased 5- to 10-fold with peak BA-TGF-β levels (400 ± 50 pg/ml) on day 20–25. BA-TGF-β levels were higher in male than female infants (p = 0.0056). Prenatal steroids decreased significantly the amount of BA-TGF-β recovered. High initial levels of BA-TGF-β persisted over time and were predictive of the need for oxygen therapy at home. We conclude that abundant BA- TGF-β is present in the lungs of preterm infants and speculate that it may be involved in inflammatory and repair processes encountered in acute and chronic lung disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.