Knowledge of Fe composition in lower-mantle minerals (primarily perovskite and ferropericlase) is essential to a complete understanding of the Earth's interior. Fe cation diffusion potentially controls many aspects of the distribution of Fe in the Earth's lower mantle, including mixing of chemical heterogeneities, element partitioning, and the extent of core-mantle communications. Fe in ferropericlase has been shown to undergo a spin transition starting at about 40 GPa and exists in a mixture of high-spin and low-spin states over a wide range of pressures. Present experimental data on Fe transport in ferropericlase is limited to pressures below 35 GPa and provides little information on the pressure dependence of the activation volume and none on the impact of the spin transition on diffusion. Therefore, known experimental data on Fe diffusion cannot be reliably extrapolated to predict diffusion throughout the lower mantle. Here, first-principles and statistical modeling are combined to predict diffusion of Fe in ferropericlase over the entire lower mantle, including the effects of the Fe spin transition. A thorough statistical thermodynamic treatment is given to fully incorporate the coexistence of high-and low-spin Fe in the model of overall Fe diffusion in the lower mantle. Pure low-spin Fe diffuses approximately 10 4 times slower than high-spin Fe in ferropericlase but Fe diffusion of the mixed-spin state is only about 10 times slower than that of high-spin Fe. The predicted Fe diffusivities demonstrate that ferropericlase is unlikely to be rate limiting in transporting Fe in deep earth since much slower Fe diffusion in perovskite is predicted.
We have studied two samples of mantle diamond containing iron carbide inclusions from Jagersfontein kimberlite, South Africa. Syngenetic crystal growth is inferred using morphological characteristics. These samples provide an opportunity to investigate the isotopic partitioning of 13 C in a terrestrial natural high-pressure and high-temperature (HPHT) system. The difference for the d 13 C values between the diamond and coexisting iron carbide averaged 7.2 6 1.3&. These data are consistent with available data from the literature showing iron carbide to be 13 C-depleted relative to elemental carbon (i.e., diamond). We infer that the minerals formed by crystallization of diamond and iron carbide at HPHT in the mantle beneath the Kaapvaal Craton. It is unclear whether crystallization occurred in subcratonic or sublithospheric mantle; in addition, the source of the iron is also enigmatic. Nonetheless, textural coherence between diamond and iron carbide resulted in isotopic partitioning of 13 C between these two phases. These data suggest that significant isotopic fractionation of 13 C/ 12 C (D 13 C up to >7&) can occur at HPHT in the terrestrial diamond stability field. We note that under reducing conditions at or below the iron-iron wustite redox buffer in a cratonic or deep mantle environment in Earth, the cogenesis of carbide and diamond may produce reservoirs of 13 C-depleted carbon that have conventionally been interpreted as crustal in origin. Finally, the large D 13 C for diamond-iron carbide shown here demonstrates D 13 C for silicate-metallic melts is a parameter that needs to be constrained to better determine the abundance of carbon within the Earth's metallic core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.