Abstract. The lifetime of methane is controlled to a very large extent by the abundance of the OH radical. The tropics are a key region for methane removal, with oxidation in the lower tropical troposphere dominating the global methane removal budget (Bloss et al., 2005). In tropical forested environments where biogenic VOC emissions are high and NO x concentrations are low, OH concentrations are assumed to be low due to rapid reactions with sink species such as isoprene. New, simultaneous measurements of OH concentrations and OH reactivity, k OH , in a Borneo rainforest are reported and show much higher OH than predicted, with mean peak concentrations of ∼2.5×10 6 molecule cm −3 (10 min average) observed around solar noon. Whilst j (O 1 D) and humidity were high, low O 3 concentrations limited the OH production from O 3 photolysis. Measured OH reactivity was very high, peaking at a diurnal average of 29.1±8.5 s −1 , corresponding to an OH lifetime of only 34 ms. To maintain the observed OH concentration given the measured OH reactivity requires a rate of OH production approximately 10 times greater than calculated using all measured OH sources. A test of our current understanding of the chemistry within a tropical rainforest was made using a detailed zero-dimensional model to compare with measurements. The model overpredicted the observed HO 2 concentrations and significantly under-predicted OH concentrations. Inclusion of an additional OH source formed as a recycled product of OH iniCorrespondence to: L. K. Whalley (l.k.whalley@leeds.ac.uk) tiated isoprene oxidation improved the modelled OH agreement but only served to worsen the HO 2 model/measurement agreement. To replicate levels of both OH and HO 2 , a process that recycles HO 2 to OH is required; equivalent to the OH recycling effect of 0.74 ppbv of NO. This recycling step increases OH concentrations by 88 % at noon and has wide implications, leading to much higher predicted OH over tropical forests, with a concomitant reduction in the CH 4 lifetime and increase in the rate of VOC degradation.
Abstract. Fluorescence Assay by Gas Expansion (FAGE) has been used to detect ambient levels of OH and HO2 radicals at the Cape Verde Atmospheric Observatory, located in the tropical Atlantic marine boundary layer, during May and June 2007. Midday radical concentrations were high, with maximum concentrations of 9 ×106 molecule cm−3 and 6×108 molecule cm−3 observed for OH and HO2, respectively. A box model incorporating the detailed Master Chemical Mechanism, extended to include halogen chemistry, heterogeneous loss processes and constrained by all available measurements including halogen and nitrogen oxides, has been used to assess the chemical and physical parameters controlling the radical chemistry. The model was able to reproduce the daytime radical concentrations to within the 1 σ measurement uncertainty of 20% during the latter half of the measurement period but significantly under-predicted [HO2] by 39% during the first half of the project. Sensitivity analyses demonstrate that elevated [HCHO] (~2 ppbv) on specific days during the early part of the project, which were much greater than the mean [HCHO] (328 pptv) used to constrain the model, could account for a large portion of the discrepancy between modelled and measured [HO2] at this time. IO and BrO, although present only at a few pptv, constituted ~19% of the instantaneous sinks for HO2, whilst aerosol uptake and surface deposition to the ocean accounted for a further 23% of the HO2 loss at noon. Photolysis of HOI and HOBr accounted for ~13% of the instantaneous OH formation. Taking into account that halogen oxides increase the oxidation of NOx (NO → NO2), and in turn reduce the rate of formation of OH from the reaction of HO2 with NO, OH concentrations were estimated to be 9% higher overall due to the presence of halogens. The increase in modelled OH from halogen chemistry gives an estimated 9% shorter lifetime for methane in this region, and the inclusion of halogen chemistry is necessary to model the observed daily cycle of O3 destruction that is observed at the surface. Due to surface losses, we hypothesise that HO2 concentrations increase with height and therefore contribute a larger fraction of the O3 destruction than at the surface.
Abstract. Atmospheric composition and chemistry above tropical rainforests is currently not well established, particularly for south-east Asia. In order to examine our understanding of chemical processes in this region, the performance of a box model of atmospheric boundary layer chemistry is tested against measurements made at the top of the rainforest canopy near Danum Valley, Malaysian Borneo. Multivariate optimisation against ambient concentration measurements was used to estimate average canopy-scale emissions for isoprene, total monoterpenes and nitric oxide. The excellent agreement between estimated values and measured fluxes of isoprene and total monoterpenes provides confidence in the overall modelling strategy, and suggests that this method may be applied where measured fluxes are not available, assuming that the local chemistry and mixing are adequately understood. The largest contributors to the optimisation cost function at the point of best-fit are OH (29%), NO (22%) and total peroxy radicals (27%). Several factors affect the modelled VOC chemistry. In particular concentrations of methacrolein (MACR) and methyl-vinyl ketone (MVK) are substantially overestimated, and the hydroxyl radical (OH)Correspondence to: T. A. M. Pugh (t.pugh@lancs.ac.uk) concentration is substantially underestimated; as has been seen before in tropical rainforest studies. It is shown that inclusion of dry deposition of MACR and MVK and wet deposition of species with high Henry's Law values substantially improves the fit of these oxidised species, whilst also substantially decreasing the OH sink. Increasing OH production arbitrarily, through a simple OH recycling mechanism , adversely affects the model fit for volatile organic compounds (VOCs). Given the constraints on isoprene flux provided by measurements, a substantial decrease in the rate of reaction of VOCs with OH is the only remaining option to explain the measurement/model discrepancy for OH. A reduction in the isoprene+OH rate constant of 50%, in conjunction with increased deposition of intermediates and some modest OH recycling, is able to produce both isoprene and OH concentrations within error of those measured. Whilst we cannot rule out an important role for missing chemistry, particularly in areas of higher isoprene flux, this study demonstrates that the inadequacies apparent in box and global model studies of tropical VOC chemistry may be more strongly influenced by representation of detailed physical and micrometeorological effects than errors in the chemical scheme.
Abstract. In April-July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rainforCorrespondence to: C. N. Hewitt (n.hewitt@lancaster.ac.uk) est" (OP3) project. Fluxes and concentrations of trace gases and particles were made from and above the rainforest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest Published by Copernicus Publications on behalf of the European Geosciences Union. 170 C. N. Hewitt et al.: The OP3 project: introduction, rationale, location characteristics and tools site was not significantly impacted by anthropogenic pollution, and this is confirmed by satellite retrievals of NO 2 and HCHO. The dominant modulators of atmospheric chemistry at the rainforest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NO x volume mixing ratio (∼100 pptv/pptv), current chemical models suggest that daytime maximum OH concentrations should be ca. 10 5 radicals cm −3 , but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements that suggest that an unexplained source of OH must exist above tropical rainforest and we continue to interrogate the data to find explanations for this.
Abstract. This paper presents a summary of the measurements made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe) coastal study in Roscoff on the North West coast of France throughout September 2006. It was clearly demonstrated that iodinemediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I 2 , by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I 2 . The heterogeneous macroalgal I 2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.