Abstract. The Canadian ACE (Atmospheric Chemistry Experiment) mission is dedicated to the retrieval of a large number of atmospheric trace gas species using the solar occultation technique in the infrared and UV/visible spectral domain. However, two additional solar disk imagers (at 525 nm and 1020 nm) were added for a number of reasons, including the retrieval of aerosol and cloud products. In this paper, we present first comparison results for these imager aerosol/cloud optical extinction coefficient profiles, with the ones derived from measurements performed by 3 solar occultation instruments (SAGE II, SAGE III, POAM III), one stellar occultation instrument (GOMOS) and one limb sounder (OSIRIS). The results indicate that the ACE imager profiles are of good quality in the upper troposphere/lower stratosphere, although the aerosol extinction for the visible channel at 525 nm contains a significant negative bias at higher altitudes, while the relative differences indicate that ACE profiles are almost always too high at 1020 nm. Both problems are probably related to ACE imager instrumental issues.
[1] The Atmospheric Chemistry Experiment (ACE) onboard the Canadian Space Agency's SCISAT-1 satellite has been in orbit since August of 2003. Its broad objective is to study the problem of stratospheric ozone depletion, particularly in the Arctic. The main instruments are two spectrometers, one an infrared Fourier Transform Spectrometer and the other a dual optical spectrophotometer sensitive in the UV and visible. Also included are two filtered imagers used to measure altitude profiles of atmospheric extinction and detect thin clouds. The nominal center wavelengths of the filters are 525 nm for the visible (VIS) imager and 1020 nm for the near-infrared (NIR) imager. With the decommissioning of other satellite instruments used to monitor global aerosols [i.e., Stratospheric Aerosol and Gas Experiment II (SAGE II), SAGE III, Polar Ozone and Aerosol Measurement (POAM) III, Halogen Occultation Experiment (HALOE)], the imagers provide much needed continuity in this data record. The data product from the imagers is still, however, in a preliminary state. Funding restrictions in the prelaunch period were responsible for an incomplete characterization of the imagers' optics and electronics and prevented corrections being made for the problems found during testing. Postlaunch data analysis to correct for image artifacts is ongoing. A comparison with coincidental measurements from SAGE II shows that systematic errors from the preliminary analysis are within 5 and 20% for the VIS and NIR imagers, respectively, for uninverted profiles of optical depth. Despite the preliminary nature of the imager results, a paper describing the imagers and the initial operational data processing code is timely because the data are already being used.
Satellite‐based limb occultation measurements are well suited for the detection and mapping of polar stratospheric clouds (PSCs) and cirrus clouds. Usually, cloud signatures are detected on aerosol extinction profiles. In this paper, ACE two‐dimensional (2‐D) imager data are used to show PSCs and cirrus clouds. Clouds can be clearly seen, with a good vertical and horizontal resolution (1 km), during sunset and sunrise. In addition, we discovered significant differences between stratospheric (PSCs) and tropospheric (cirrus) clouds. PSCs appear as “symmetric” layers, no horizontal or vertical “structure” is detected within the PSC, suggesting that PSCs are uniform clouds with a very large horizontal extent. On the other hand, cirrus cloud image geometry is not well‐defined. In contrast to PSCs, cirrus clouds appear as irregular shaped clouds. These tropospheric clouds seem to have horizontal dimensions similar to the Sun on the image (25 km at the tangent point). The qualitative display of these different kinds of clouds, seen on the raw 2‐D imager data, proves the ability of the imagers to be an efficient cloud detector in the upper troposphere‐lower stratosphere (UTLS) region. Moreover, the structure of these clouds can be derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.