Flow instability in a miniature centrifugal pump is numerically simulated with the RANS equations and the SST k-ω turbulence model. The energy gradient method is adopted to analyze the flow instability at design load and two off-design loads, and the results are compared with those analyzed by Q-criterion. The regions with large magnitude of energy gradient function (K) indicate pronounced turbulent intensity and poor flow stability. Internal flow stability is investigated in details for both the near blade surfaces region and the impeller passages.To study the mechanism of energy gradient method, internal flow parameters such as the velocity and total pressure, the transverse gradient of total mechanical energy and the work done by shear stresses are investigated respectively. The results show that the energy dissipation reaches its maximum around the leading edge of suction surface. The value of the energy gradient function K presents a different magnitude for the near blade surfaces region and the impeller passages, and the K in the impeller passage is much larger. Regions with maximum of the work done by shear stresses are concentrated on the suction surface, regions with large transverse gradient of total mechanical energy is concentrated on the hub surfaces or shroud surfaces. It is further found that the K can reflect the influence of the outer boundaries of vortex on the flow near blade surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.