Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation without any postannealing treatment. Both kinds of nanocrystals (NCs) have been prepared using copper nitrate and cobalt nitrate as the starting materials and distilled water as the solvent. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) measurements. The obtained results confirm the presence of the both of oxides nanopowders produced during chemical precipitation using microwave irradiation. A strong emission under UV excitation is obtained from the prepared CuO and Co3O4nanoparticles. The results show that the nanoparticles have high dispersion and narrow size distribution. The line scans of atomic force microscopy (AFM) images of the nanocrystals (NCs) sprayed on GaAs substrates confirm the results of both X-ray diffraction and transmission electron microscopy. Furthermore, vibrational studies have been carried out using Raman spectroscopic technique. Specific Raman peaks have been observed in the CuO and Co3O4nanostructures, and the full width at half maximum (FWHM) of the peaks indicates a small particle size of the nanocrystals.
We demonstrate quantum interference between photons generated by the radiative decay processes of excitons that are bound to isolated fluorine donor impurities in ZnSe/ZnMgSe quantum-well nanostructures. The ability to generate single photons from these devices is confirmed by autocorrelation experiments, and the indistinguishability of photons emitted from two independent nanostructures is confirmed via a Hong-Ou-Mandel dip. These results indicate that donor impurities in appropriately engineered semiconductor structures can portray atomlike homogeneity and coherence properties, potentially enabling scalable technologies for future large-scale optical quantum computers and quantum communication networks.
The near band edge photoluminescence (PL) of cubic GaN epilayers grown by radio frequency (rf) plasma-assisted molecular beam epitaxy on (100) GaAs is measured. Since the PL is excited with an unfocused laser beam it resembles the layer properties rather than the properties of micron-size inclusions or micro crystals. The low temperature PL spectra show well separated lines at 3.26 and 3.15 eV which are due to excitonic and donor-acceptor pair transitions (donor binding energy 25 meV, acceptor binding energy 130 meV). No emission above the band gap of the cubic phase is detected. PL results are confirmed by x-ray diffraction and atomic force microscopy which reveal only negligible contributions from hexagonal inclusions and micron size single crystals. The room temperature PL consists of an emission band at about 3.21 eV with a full width at half maximum of 117 meV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.