We consider the problem whether graph states can be ground states of local interaction Hamiltonians. For Hamiltonians acting on n qubits that involve at most two-body interactions, we show that no n-qubit graph state can be the exact, non-degenerate ground state. We determine for any graph state the minimal d such that it is the non-degenerate ground state of a d-body interaction Hamiltonian, while we show for d ′ -body Hamiltonians H with d ′ < d that the resulting ground state can only be close to the graph state at the cost of H having a small energy gap relative to the total energy. When allowing for ancilla particles, we show how to utilize a gadget construction introduced in the context of the k-local Hamiltonian problem, to obtain n-qubit graph states as non-degenerate (quasi-)ground states of a two-body Hamiltonian acting on n ′ > n spins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.