Radiochromic leuco crystal violet (LCV) micelle gel dosimeters are promising three-dimensional radiation dosimeters because of their spatial stability and suitability for optical readout. The effects of surfactant type and surfactant concentration on dose sensitivity of LCV micelle gels are tested, demonstrating that dose sensitivity and initial colour of the gel increases with increasing Triton x-100 (Tx100) concentration. Using Cetyl Trimethyl Ammonium Bromide (CTAB) in place of Tx100 produces gels that are nearly colourless prior to irradiation, but reduces the dose sensitivity. The separate effects of Tri-chloro acetic acid concentration and pH are investigated, revealing that controlling the pH near 3.6 is crucial for achieving high dose sensitivity. The sensitizing effect of chlorinated species on dose sensitivity is tested using 2,2,2-trichloroethanol (TCE), chloroform, and 1,1,1-trichloro-2-methyl-2-propanol hemihydrate. TCE gives the largest improvement in dose sensitivity and is recommended for use in micelle gel dosimeters because it is less volatile and safer to use than chloroform. Preliminary experiments on a new gel containing CTAB as the surfactant and TCE show that this new gel gives a dose sensitivity that is 24% higher than that of previous LCV micelle gels and is nearly colourless prior to irradiation.
In this study, recipe optimization of Leuco Crystal Violet (LCV) micelle gels made with the surfactant Cetyl Trimethyl Ammonium Bromide (CTAB) and the chemical sensitizer 2,2,2-trichloroethanol (TCE) was aided by a two-level three-factor designed experiment. The optimized recipe contains 0.75 mM LCV, 17.0 mM CTAB, 120 mM TCE, 25.0 mM tri-chloro acetic acid (TCAA), 4 wt% gelatin and ~96 wt% water. Dose sensitivity of the optimized gel is 1.5 times higher than that of Jordan's standard LCV micelle gel. Spatial integrity of the 3D dose distribution information in 1L phantoms filled with this recipe is maintained for >120 d. Unfortunately, phantoms made using the optimized recipe showed dose-rate dependence (14% difference in optical attenuation at the peak dose using electron beam irradiations at 100 and 400 MU min(-1)). Further testing suggests that the surfactant CTAB is the cause of this dose rate behaviour.
Streamlined open-source gel dosimetry analysis in 3D slicer To cite this article: K M Alexander et al 2018 Biomed. Phys. Eng. Express 4 045041 View the article online for updates and enhancements. Related content Implementation of an efficient workflow process for gel dosimetry using 3D Slicer K M Alexander, C Pinter, J Andrea et al.-A fast dual wavelength laser beam fluidless optical CT scanner for radiotherapy 3D gel dosimetry II: dosimetric performance Daniel Ramm-Three-dimensional small field dosimetry with radiochromic gels
In the clinic, routine quality assurance tests ensure the proper functioning of each individual aspect of a radiation therapy treatment delivery. However, these tests may not guarantee an accurate treatment delivery. In this work, we present the design and application of a head phantom (using 3D printing technology) developed for end-to-end quality assurance of a stereotactic radiation therapy treatment for brain metastases, coupled with inserts for ion chamber, and film and gel dosimeters. The head phantom was subjected to the entire clinical workflow, with each stage of the process being performed by the appropriate clinical personnel to ensure that this quality assurance test mimics the clinical scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.