Wine production is a complex process both from biochemical and microbiological point of view in which yeast plays a central role. The use of the wine yeast Saccharomyces cerevisiae and non- Saccharomyces yeasts as mixed starter cultures for wine fermentations is of increasing interest to enhance the quality of wine.The most common stress, yeast cells encounter during wine fermentation is the increase in ethanol concentration.To enhance ethanol tolerance, alteration in the cellular lipid composition is one of its defence mechanism. Ethanol tolerance and cellular fatty acid composition of alcohol producing non Saccharomyces forms were compared with enological strains of Sacccharomyces cerevisiae. Saccharomyces cerevisiae used for the study, tolerated 15 % of ethanol and the non Saccharomyces strains such as, Issatchenkia occidentalis and Issatchenkia orientalis tolerated 10 % of ethanol. On exposure of Saccharomyces cerevisiae to ethanol stress, the proportion of monounsaturated fatty acids increased with concomitant decrease in saturated fatty acids. Decrease in monounsaturated fatty acids, exhibited by non-Saccharomyces yeasts when exposed to ethanol stress, could be one of the reasons for their inability to withstand more than 10 % of alcohol. Multivariate techniques of data analysis - principal component analysis and linear discriminant analysis were employed in order to establish differentiation criteria as function of yeast strains, alcohol stress and their fatty acid profile. Based on the data, Chemometrics, such as principal component analysis and discriminant function analysis, can be successfully applied to fatty acid data to categorize the yeast.
The ethanol fermenting genes such as pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhII) were cloned fromZymomonas mobilisand transformed into three different cellulolytic bacteria, namelyEnterobacter cloacaeJV,Proteus mirabilisJV andErwinia chrysanthemiand their cellulosic ethanol production capability was studied. RecombinantE. cloacaeJV was found to produce 4.5% and 3.5% (v/v) ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinantP. mirabilisandE. chrysanthemiwith the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinantE. cloacaestrain produced twofold higher percentage of ethanol than the wild type. The recombinantE. cloacaestrain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.