Hemophilia B is a severe X-linked bleeding diathesis caused by the absence of functional blood coagulation factor IX, and is an excellent candidate for treatment of a genetic disease by gene therapy. Using an adeno-associated viral vector, we demonstrate sustained expression (>17 months) of factor IX in a large-animal model at levels that would have a therapeutic effect in humans (up to 70 ng/ml, adequate to achieve phenotypic correction, in an animal injected with 8.5 × 10 12 vector particles/kg). The five hemophilia B dogs treated showed stable, vector dose-dependent partial correction of the whole blood clotting time and, at higher doses, of the activated partial thromboplastin time. In contrast to other viral gene delivery systems, this minimally invasive procedure, consisting of a series of percutaneous intramuscular injections at a single timepoint, was not associated with local or systemic toxicity. Efficient gene transfer to muscle was shown by immunofluorescence staining and DNA analysis of biopsied tissue. Immune responses against factor IX were either absent or transient. These data provide strong support for the feasibility of the approach for therapy of human subjects.
Hemophilia B, or factor IX deficiency, is an X-linked recessive disorder occurring in about 1 in 25,000 males. Affected individuals are at risk for spontaneous bleeding into many organs; treatment mainly consists of the transfusion of clotting factor concentrates prepared from human blood or recombinant sources after bleeding has started. Small- and large-animal models have been developed and/or characterized that closely mimic the human disease state. As a preclinical model for gene therapy, recombinant adeno-associated viral vectors containing the human or canine factor IX cDNAs were infused into the livers of murine and canine models of hemophilia B, respectively. There was no associated toxicity with infusion in either animal model. Constitutive expression of factor IX was observed, which resulted in the correction of the bleeding disorder over a period of over 17 months in mice. Mice with a steady-state concentration of 25% of the normal human level of factor IX had normal coagulation. In hemophilic dogs, a dose of rAAV that was approximately 1/10 per body weight that given to mice resulted in 1% of normal canine factor IX levels, the absence of inhibitors, and a sustained partial correction of the coagulation defect for at least 8 months.
The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.
Hemophilia B is a bleeding disorder caused by mutations in the factor IX gene. The disorder is X-linked recessive with a prevalence of about 1 in 30,000 Caucasian males. Factor IX is naturally synthesized in the liver and secreted into blood. Here we report the construction of recombinant adenoviral vectors containing the canine factor IX cDNA that are capable of transducing hepatocytes in mice at high efficiencies in vivo without partial hepatectomy. The recombinant viral vector was used to treat hemophilia B dogs by direct vector infusion into the portal vasculature of deficient animals. Plasma factor IX concentrations in the treated hemophilia B dogs increased from 0 to 300% of the level present in normal dogs, resulting in complete amelioration of the disease as demonstrated by normal blood coagulation and hemostatic measurements. Although plasma factor IX concentration started to decline after a few days, therapeutic levels of factor IX persisted for 1-2 months in the treated animals. The results validate the principle of in ivo hepatic gene delivery to reconstitute the genetic deficiency in a large animal model and suggest that gene therapy is achievable when long-acting vectors are developed.Hemophilia B is an X-linked disorder resulting in a deficiency of plasma factor IX, which is normally synthesized and secreted from the liver. The disease affects 1 in 30,000 males (1). Various human protein replacement therapies have significantly improved the clinical outcome of affected individuals, yet there still exists a high degree of morbidity and mortality in part due to previous contamination with human immunodeficiency virus and other hepatitis viruses. The current expense of virus-free factor IX usually limits therapy to treatment ofbleeding episodes once they occur. Due to the relatively short half-life of factor IX in the circulation, affected individuals have life-long risks of central nervous system bleeds, chronic arthritis, and other life-threatening hemorrhage. Replacement therapy has improved, but has failed to abrogate, chronic arthropathy, particularly in severely affected patients. A number of cell types in different organs have been targeted for somatic gene therapy of hemophilia B, which include fibroblasts, myoblasts, endothelial cells, keratinocytes, and hepatocytes (2-8). We have pursued the liver as the target organ because hepatocytes represent the natural site offactor IX synthesis and secretion. We have previously been able to transduce hepatocytes in hemophilia B dogs after partial hepatectomy using a retroviral vector containing the factor IX cDNA (9). This resulted in long-term expression of about 0.1% of the normal plasma factor IX concentration. To attempt to produce greater levels of recombinant factor IX in animals, we have pursued replication-deficient recombinant adenovirus (10-12) as a gene delivery vector for the treatment of hemophilia B. METHODSCanine Factor IX Adenoviral Vectors. The isolation of a functional canine factor IX cDNA has been described (9). This cDNA ...
We have used the polymerase chain reaction to amplify the entire coding region of canine factor IX from a hemophilia B animal. When the sequence was compared to that which codes for normal canine factor IX, a single missense mutation was identified. This mutation (G --A at nucleotide 1477) results in the substitution of glutamic acid for glycine-379 in the catalytic domain of the molecule. The mutation creates a new restriction site that allowed confirmation of the abnormal sequence in both hemophilic and carrier animals. Amino acid 379 in canine factor IX corresponds to position 381 in human factor IX, a location at which no human mutations have been described. Moreover, it occurs at one of the few amino acids that have been rigorously conserved among the trypsin-like serine proteases throughout evolution. The mutation responsible for canine hemophilia B results in a complete lack of circulating factor IX in the affected animals. As it is unusual for a missense mutation to result in a complete absence of protein product, structural modeling of the mutant and normal proteins was pursued. These studies suggest that the observed mutation would have major adverse effects on the tertiary structure of the aberrant factor IX molecule. The elucidation of this mutation sheds light on structure-function relationships in factor IX and should facilitate future experiments directed toward gene therapy of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.