The present study aims to develop an efficient dynamic statistical model to describe the daily behavior of boundary layer ozone in Macau. Four types of Kalman-filter-based models were proposed and applied to model the daily maximum of the 8 hr averaged ozone concentrations within a decade (2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009). First, the boundary layer ozone was modelled with the timevarying autoregressive model of order p, TVAR(p), which is a pure time series model hindcasting the ozone concentration by a weighted sum of the ozone histories of the previous p days. Then, it was modelled with the time-varying autoregressive model with linear exogenous input, TVAREX-Lin, which combines the TVAR model and the exogenous input of key meteorological variables in a linear fashion. Next, the nonlinear TVAREX model (TVAREX-NLin) which assumes the nonlinear influence of individual meteorological variable on ozone was adopted. Finally, a semiempirical TVAREX model (TVAREX-O 3 ) was proposed to address the coastal nature of Macau and the interaction between the input variables. It was found that the proposed TVAREX-O 3 model was the most efficient one among the model candidates in terms of the general modelling performance and the capability of modelling the episode situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.