The ability of short-duration high-intensity exercise to stimulate bone formation in confinement was investigated using immature Holstein bull calves as a model. Eighteen bull calves, 8 wk of age, were assigned to one of three treatment groups: 1) group-housed (GR, which served as a control), 2) confined with no exercise (CF), or 3) confined with exercise (EX). The exercise protocol consisted of running 50 m on a concrete surface once daily, 5 d/wk. Confined calves remained stalled for the 42-d duration of the trial. Blood samples were taken to analyze concentrations of osteocalcin and deoxypyridinoline, markers of bone formation and resorption. At the completion of the trial, calves were humanely killed, and both forelegs were collected. The fused third and fourth metacarpal bone was scanned using computed tomography for determination of cross-sectional geometry and bone mineral density. Three-point bending tests to failure were performed on metacarpal bones. The exercise protocol resulted in the formation of a rounder bone in EX as well as in increased dorsal cortex thickness compared with those in the GR and CF. The exercised calves had a significantly smaller medullary cavity than CF and GR (P < 0.01) and a larger percentage of cortical bone area than CF (P < 0.01). Dorsal, palmar, and total bone mineral density was greater in EX than in CF (P < 0.05), and palmar and total bone mineral densities were greater (P < 0.05) in EX than in GR. There was a trend for the bones of EX to have a higher fracture force than CF (P < 0.10). Osteocalcin concentrations normalized from d 0 were higher in EX than CF (P < 0.05). Therefore, the exercise protocol altered bone shape and seemed to increase bone formation comparison with the stalled and group-housed calves.
The hypothesis that short-duration exercise may ameliorate the decrease in bone mass observed with confinement was investigated with 18 quarter horses (nine colts and nine fillies) weaned at 4 mo of age and placed into box stalls. After a 5-wk adjustment period, individuals were grouped by age and weight, and then divided randomly into three treatment groups: 1) group housed; 2) confined with no exercise; and 3) confined with exercise. The confined and exercised groups were housed in 3.7 m x 3.7 m box stalls for the 56-d duration of the trial. The exercised group was sprinted 82 m/d, 5 d/wk, in a fenced grass alleyway. The weanlings were led down an alleyway, turned loose in a small pen, and then released and allowed to run back down the alley. The group horses were housed together in a 992-m2 drylot with free access to exercise. On d 0, 28, and 56, dorsopalmar and lateromedial radiographs of the left third metacarpal bone were taken to estimate changes in bone mineral content and cortical widths. Mean values of medial, lateral, and total radiographic bone aluminum equivalence increased over time (P < 0.05), whereas dorsal and palmar radiographic bone aluminum equivalence did not change significantly. Dorsal, medial, and total radiographic bone aluminum equivalence tended (P = 0.09) to differ by a treatment x day interaction, with values increasing over time only in the exercised group. Normalized medial and total radiographic bone aluminum equivalence tended (P < 0.1) to differ (P < 0.01) with treatment, with exercised horses having greater bone aluminum equivalence than confined horses. Dorsopalmar cortical width in exercised horses was greater than on d 56 (treatment x day; P = 0.07). The dorsopalmar medullary cavity decreased in exercised vs. group-housed horses (P = 0.027), whereas dorsal and medial cortical width tended to increase only in the exercised horses (treatment x day; P < 0.01). This study indicated that a short-duration exercise protocol might be effective in improving bone mass and therefore skeletal strength in horses.
Previous research has determined that maintaining young animals in stalls is detrimental to their bone health, while the addition of 50 to 82-m sprints 5 d/week aids in counteracting the reduction of bone strength from confinement. The current research aims to determine if 1 or 3 d/week of sprinting affords the same benefits to bone as 5 d/week of sprinting compared to animals confined with no sprinting. Twenty-four Holstein bull calves were obtained from the Michigan State University Dairy Cattle Teaching and Research Center. At 9 wk of age, calves were randomly assigned to treatments of 1, 3, or 5 d/week of sprint exercise, or to the confined control group sprinted 0 d/week. Each treatment had 6 calves. Individual sprinting bouts included a single sprint down a 71-m concrete aisle. For the duration of the 6-wk study, calves were housed at the MSU Beef Cattle Teaching and Research Center in stalls which afforded calves room to stand, lay down, and turn around. Serum was collected weekly via jugular venipuncture to obtain concentrations of osteocalcin (OC) and C-telopeptide crosslaps of type I collagen (CTX-1)—markers of bone formation and degradation, respectively. Sprints were videotaped weekly to determine stride frequency and sprint velocity. On day 42, calves were humanely euthanized at the Michigan State University Meat Lab and both front limbs were immediately harvested. Computed tomography scans and mechanical testing were performed on the left fused third and fourth metacarpal bones. Serum OC concentration was greatest for calves sprinted 5 d/week (P < 0.001). Calves sprinted 5 d/week had both greater stride frequency (P < 0.05) and lower sprint velocity (P < 0.05). All exercise treatments experienced greater dorsal cortical widths compared to control animals (P < 0.01). Through mechanical testing, fracture forces of all sprinting treatments were determined to be greater than the control treatment (P < 0.02). Results from this study support that sprinting 1, 3, or 5 d/week during growth can increase bone health and cause favorable alterations in bone markers. While all exercise treatments had over a 20% increase to fracture force, calves sprinted 1 d/week sprinted only 426 m over the 6-wk study and still experienced over a 20% increase in bone strength compared to confined calves. This study demonstrates the remarkably few strides at speed needed to enhance bone strength and emphasizes the danger to skeletal strength if sprinting opportunities are not afforded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.