Improving feed utilization efficiency in dairy cattle could have positive economic and environmental effects that would support the sustainability of the dairy industry. Identifying key differences in metabolism between high and low feed-efficient animals is vital to enhancing feed conversion efficiency. Therefore, our objectives were (1) to determine whether cows grouped by either high or low feed efficiency have measurable differences in net fat and carbohydrate metabolism that account for differences in heat production (HP), and if so, whether these differences also exists under conditions of feed withdrawal when the effect of feeding on HP is minimized, and (2) to determine whether the abundance of mitochondria in the liver can be related to the high or low feed-efficient groups. Ten dairy cows from a herd of 15 (parity = 2) were retrospectively grouped into either a high (H) or a low (L) feed-efficient group (n = 5 per group) based on weekly energy-corrected milk (ECM) divided by dry mater intake (DMI) from wk 4 through 30 of lactation. Livers were biopsied at wk −4, 2, and 12, and blood was sampled weekly from wk −3 to 12 relative to parturition. Blood was subset to be analyzed for the transition period (wk −3 to 3) and from wk 4 to 12. In wk 5.70 ± 0.82 (mean ± SD) postpartum (PP), cows spent 2 d in respiration chambers (RC), in which CO 2 , O 2 , and CH 4 gases were measured every 6 min for 24 h. Fatty acid oxidation (FOX), carbohydrate oxidation (COX), metabolic respiratory quotient (RQ), and HP were calculated from gas measurements for 23 h. Cows were fed ad libitum (AD-LIB) on d 1 and had feed withdrawn (RES, restricted diet) on d 2. Additional blood samples were taken at the end of the AD-LIB and RES feeding periods in the RC. During wk 4 to 30 PP, H had greater DMI/kg of metabolic body weight (BW 0.75 ), ECM per kilogram of BW 0.75 yield, and ECM/DMI ratio, compared with L, but a lower body condition score between wk 4 and 12 PP. In the RC period, we detected no differences in BW, DMI, or milk yield between groups. We also detected no significant group or group by feeding period interactions for plasma metabolites except for Revised Quantitative Insulin Sensitivity Check Index, which tended to have a group by feeding period interaction. The H group had lower HP and HP per kilogram of BW 0.75 compared with L. Additionally, H had lower FOX and FOX per kilogram of BW 0.75 compared with L during the AD-LIB period. Methane, CH 4 per kilogram of BW 0.75 , and CH 4 per kilogram of milk yield were lower in H compared with L, but, when adjusted for DMI, CH 4 / DMI did not differ between groups, nor did HP/DMI. Relative mitochondrial DNA copy numbers in the liver were lower in the L than in the H group. These results suggest that lower feed efficiency in dairy cows may result from fewer mitochondria per liver cell as well as a greater whole-body HP, which likely partially results from higher net fat oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.