Signifi cant earthquakes are increasingly occurring within the continental interior of the United States, including fi ve of moment magnitude (M w) ≥ 5.0 in 2011 alone. Concurrently, the volume of fl uid injected into the subsurface related to the production of unconventional resources continues to rise. Here we identify the largest earthquake potentially related to injection, an M w 5.7 earthquake in November 2011 in Oklahoma. The earthquake was felt in at least 17 states and caused damage in the epicentral region. It occurred in a sequence, with 2 earthquakes of M w 5.0 and a prolifi c sequence of aftershocks. We use the aftershocks to illuminate the faults that ruptured in the sequence, and show that the tip of the initial rupture plane is within ~200 m of active injection wells and within ~1 km of the surface; 30% of early aftershocks occur within the sedimentary section. Subsurface data indicate that fl uid was injected into effectively sealed compartments, and we interpret that a net fl uid volume increase after 18 yr of injection lowered effective stress on reservoir-bounding faults. Signifi cantly, this case indicates that decades-long lags between the commencement of fl uid injection and the onset of induced earthquakes are possible, and modifi es our common criteria for fl uid-induced events. The progressive rupture of three fault planes in this sequence suggests that stress changes from the initial rupture triggered the successive earthquakes, including one larger than the fi rst.
Unconventional oil and gas production provides a rapidly growing energy source; however, high-production states in the United States, such as Oklahoma, face sharply rising numbers of earthquakes. Subsurface pressure data required to unequivocally link earthquakes to wastewater injection are rarely accessible. Here we use seismicity and hydrogeological models to show that fluid migration from high-rate disposal wells in Oklahoma is potentially responsible for the largest swarm. Earthquake hypocenters occur within disposal formations and upper basement, between 2- and 5-kilometer depth. The modeled fluid pressure perturbation propagates throughout the same depth range and tracks earthquakes to distances of 35 kilometers, with a triggering threshold of ~0.07 megapascals. Although thousands of disposal wells operate aseismically, four of the highest-rate wells are capable of inducing 20% of 2008 to 2013 central U.S. seismicity.
Models of continental breakup remain uncertain because of a lack of knowledge of strain accommodation immediately before breakup. Our new three-dimensional seismic velocity model from the Main Ethiopian rift clearly images mid-crustal intrusions in this active, transitional rift setting, supporting breakup models based on dike intrusion and magma supply. The most striking features of our velocity model are anomalously fast, elongate bodies (velocity, V p ϳ6.5-6.8 km/s) extending along the rift axis, interpreted as cooled mafic intrusions. These 20-km-wide and 50-km-long bodies are separated and laterally offset from one another in a right-stepping en echelon pattern, approximately mimicking surface segmentation of Quaternary volcanic centers. Our crustal velocity model, combined with results from geologic studies, indicates that below a depth of ϳ7 km extension is controlled by magmatic intrusion in a ductile middle to lower crust, whereas normal faulting and dike intrusion in a narrow zone in the center of the rift valley control extension in the brittle upper crust. This zone is inferred to be the protoridge axis for future seafloor spreading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.