Nd-Fe-B-type die-upset magnet with high electrical resistivity was prepared by doping of eutectic DyF3–LiF salt mixture. Mixture of melt-spun Nd-Fe-B flakes (MQU-F: Nd13.6Fe73.6Co6.6Ga0.6B5.6) and eutectic binary (DyF3–LiF) salt (25 mol% DyF3 – 75 mol% LiF) was hot-pressed and then die-upset. By adding the eutectic salt mixture (> 4 wt%), electrical resistivity of the die-upset magnet was enhanced to over 400 μΩ.cm compared to 190 μΩ.cm of the un-doped magnet. Remarkable enhancement of the electrical resistivity was attributed to homogeneous and continuous coverage of the interface between flakes by the easily melted eutectic salt dielectric mixture. It was revealed that active substitution of the Nd atoms in neighboring flakes by the Dy atoms from the added (DyF3–LiF) salt mixture had occurred during such a quick thermal processing of hot-pressing and die-upsetting. This Dy substitution led to coercivity enhancement in the die-upset magnet doped with the eutectic (DyF3–LiF) salt mixture. Coercivity and remanence of the die-upset magnet doped with (DyF3–LiF) salt mixture was as good as those of the DyF3-doped magnet.
Feasibility of the electrophoresis deposition (EPD) technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.