Citation for published item:v¡ opezD uFwF nd reid D wF nd tonkerD FqF nd orresD wFeF F nd o ertsD F F nd lton D hFtF nd woonD hFE F nd r rrisonD pFeF @PHIUA 9e system ti se r h for ne rEinfr red ounterp rts of ne r y ultr luminous Er y sour es @ssAF9D wonthly noti es of the oy l estronomi l o ietyFD RTW @IAF ppF TUIETVPF Further information on publisher's website: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACTWe present the results of our continued systematic search for near-infrared (NIR) candidate counterparts to ultraluminous X-ray sources (ULXs) within 10 Mpc. We observed 42 ULXs in 24 nearby galaxies and detected NIR candidate counterparts to 15 ULXs. Fourteen of these ULXs appear to have a single candidate counterpart in our images and the remaining ULX has 2 candidate counterparts. Seven ULXs have candidate counterparts with absolute magnitudes in the range between -9.26 and -11.18 mag, consistent with them being red supergiants (RSGs). The other eight ULXs have candidate counterparts with absolute magnitudes too bright to be a single stellar source. Some of these NIR sources show extended morphology or colours expected for Active Galactic Nuclei (AGN), strongly suggesting that they are likely stellar clusters or background galaxies. The red supergiant candidate counterparts form a valuable sample for follow-up spectroscopic observations to confirm their nature, with the ultimate goal of directly measuring the mass of the compact accretor that powers the ULX using binary Doppler shifts.
Hydrogen-rich, core-collapse supernovae are typically divided into four classes: IIP, IIL, IIn, and IIb. In general, interaction with circumstellar material is only considered for Type IIn supernovae. However, recent hydrodynamic modeling of IIP and IIL supernovae requires circumstellar material to reproduce their early light curves. In this scenario, IIL supernovae experience large amounts of mass loss before exploding. We test this hypothesis on ASASSN-15oz, a Type IIL supernova. With extensive follow-up in the X-ray, UV, optical, IR, and radio we present our search for signs of interaction, and the mass-loss history indicated by their detection. We find evidence of short-lived intense mass-loss just prior to explosion from light curve modeling, amounting in 1.5 M of material within 1800 R of the progenitor. We also detect the supernova in the radio, indicating mass-loss rates of 10 −6 -10 −7 M yr −1 prior to the extreme mass-loss period. Our failure to detect the supernova in the X-ray and the lack of narrow emission lines in the UV, optical, and NIR do not contradict this picture and place an upper limit on the mass-loss rate outside the extreme period of < 10 −4 M yr −1 . This paper highlights the importance gathering comprehensive data on more Type II supernovae to enable detailed modeling of the progenitor and supernova which can elucidate their mass-loss histories and envelope structures and thus inform stellar evolution models.
We present Very Large Telescope/X-shooter and Chandra X-ray observatory/ACIS observations of the ULX [SST2011] J110545.62+000016.2 in the galaxy NGC 3521. The source identified as a candidate near-infrared counterpart to the ULX in our previous study shows an emission line spectrum of numerous recombination and forbidden lines in the visible and near-infrared spectral regime. The emission from the candidate counterpart is spatially extended (∼34 pc) and appears to be connected with an adjacent Hii region, located ∼138 pc to the NE. The measured velocities of the emission lines confirm that both the candidate counterpart and Hii region reside in NGC 3521. The intensity ratios of the emission lines from the ULX counterpart show that the line emission originates from the combined effect of shock and photoionisation of low metallicity (12 + log (O/H) = 8.19 ± 0.11) gas. Unfortunately, there is no identifiable spectral signature directly related to the photosphere of the mass-donor star in our spectrum. From the archival Chandra data, we derive the X-ray luminosity of the source in the 0.3-7 keV range to be (1.9 ± 0.8) × 10 40 erg cm −2 s −1 , almost a factor of four higher than what is previously reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.