ABSTRACT:A study was conducted to investigate the trace metal pollution of water and sediments of downstream of Tsurumi River, Yokohama, Japan. Twenty samples of water and sediments were collected from the river starting from Tokyo bay side up to the junction point of the Yagami River. Results show that the mean concentrations of chromium, cupper and nickel in water greatly exceed (>100 times) the surface water standard. The concentration of molybdenum and lead was also higher than standard values while iron and manganese was lower than that of surface water standard. The mean concentration of zinc, cupper, cadmium, lead, chromium, vanadium, bromine and iodine was 381.1, 133.0, 1.0, 40.8, 102.9, 162.0, 71.5 and 10.6 碌g/g sediments, respectively and was greatly exceed the average worldwide shale concentrations and average Japanese river sediment values. However, mean concentration of arsenic, nickel and strontium was 11.0, 36.6 and 164.6 碌g/g sediments, respectively which was lower than the average shale value. Other analyzed trace metals, including barium, zirconium, rubidium, yttrium, tin, antimony, cesium, lanthanum, cerium, praseodymium and neodymium were detected in river sediments; the concentration of which was close to the Japan's river sediment average values. Pollution load index values of the sites of the studied area ranged from 1.24 to 7.65 which testify that the river sediments are polluted. The PLI value of the area was, however, high (6.53) as the concentration of trace metals like zinc, cupper, cadmium, lead and chromium were very high and were the major pollutants.
Water and sediment samples were collected from 20 location of the Buriganga river of Bangladesh during Summer and Winter 2009 to determine the spatial distribution, seasonal and temporal variation of different heavy metal contents. Sequential extraction procedure was employed in sediment samples for the geochemical partitioning of the metals. Total trace metal content in water and sediment samples were analyzed and compared with different standard and reference values. Concentration of total chromium, lead, cadmium, zinc, copper, nickel, cobalt and arsenic in water samples were greatly exceeded the toxicity reference values in both season. Concentration of chromium, lead, copper and nickel in sediment samples were mostly higher than that of severe effect level values, at which the sediment is considered heavily polluted. On average 72 % chromium, 92 % lead, 88 % zinc, 73 % copper, 63 % nickel and 68 % of total cobalt were associated with the first three labile sequential extraction phases, which portion is readily bioavailable and might be associated with frequent negative biological effects. Enrichment factor values demonstrated that the lead, cadmium, zinc, chromium and copper in most of the sediment samples were enriched sever to very severely. The pollution load index value for the total area was as high as 21.1 in Summer and 24.6 in Winter season; while values above one indicates progressive deterioration of the sites and estuarine quality. The extent of heavy metals pollution in the Buriganga river system implies that the condition is much frightening and may severely affect the aquatic ecology of the river.
The Tsurumi, a class-one Japanese river, has a significant metal loading originating from urban environment. Water and sediment samples were collected from 20 sites in winter and summer, 2009 and were analyzed to determine and compare the extent of different trace element enrichment. A widely used five-step sequential extraction procedure was also employed for the fractionation of the trace elements. Concentrations of zinc, copper, lead, chromium, and cadmium were three to four times higher than that of reference values and downstream sediments are much more polluted than the upstream sites. Geochemical partitioning results suggest that the potential trace metal mobility in aquatic environment was in the order of: cadmium > zinc > lead > copper > cobalt > chromium > molybdenum > nickel. About 80.2% zinc, 77.9% molybdenum, 75.3% cobalt, 63.7% lead, 60.9% copper, 55.1% chromium, and 39.8% nickel in the sediment were contributed anthropogenically. According to intensity of pollution, Tsurumi river sediments are moderately to heavily contaminated by zinc, lead, and cobalt. Enrichment factor values demonstrated that zinc, lead, and molybdenum have minor enrichment in both the season. The pollution load index (PLI) has been used to access the pollution load of different sampling sites. The area load index and average PLI values of the river were 7.77 and 4.93 in winter and 7.72 and 4.89 in summer, respectively. If the magnitude of pollution with trace metal in the river system increases continuously, it may have a severe impact on the river's aquatic ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.