The influence of ambient atmospheric exposure on the chemistry of the magnetron-sputtered aluminium surface has been characterized as hydroxyl incorporation to the oxide surface and concurrent adsorption of airborne carbonaceous contamination. Here, the consequence of these changes in oxide surface chemistry upon the adsorption of stearic acid from solution is investigated. Water contact angle and polarization modulation infrared refection-absorption spectroscopy (PM-IRRAS) reveal a strong dependence of stearic acid monolayer order upon ambient exposure time prior to assembly. It is proposed that hydroxyl formation in the ambient atmosphere increases the stearic acid adsorption density and thus the selfassembled monolayer (SAM) order, whereas airborne carbonaceous material blocks these adsorption sites and introduces disorder in the monolayers through a decrease in adsorption density.Monolayer adsorption has been correlated with the aluminium oxide surface chemistry. It is proposed that this phenomenon represents an explanation for the irreproducible results often reported for assembly on metal oxide substrates. Furthermore, it indicates that in this broad class of material surfaces assembly can be used as a means of estimating the reactivity of surfaces with respect to organic overlayers such as paints and adhesives. Removal of adsorbed carbonaceous material from the aluminium surface using an oxygen plasma resulted in a significantly increased order of the stearic acid monolayer, as assessed by water contact angle. This observation is rationalized as the removal of carbonaceous material blocking surface adsorption sites by the plasma, but retention of the underlying hydroxyl functionality. This is predicted to have important implications in the preparation of aluminium for painting and adhesive bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.