Segmentation of digital image plays a major role in computer visualization. It is used to extract meaningful objects that exist on the images. Region based clustering is done to extract objects based on the colors present in the satellite images. The principle of clustering is to identify the similar domains from a huge data set to produce an accurate representation of the image. In this paper, k-means, fuzzy c means and kernel fuzzy c means clustering algorithms are used to partition an image data set into number clusters. The images are clustered into four and six categories for which the qualities of the images are compared through the internal criterion techniques Davies-Bouldin index and Dunn index. For this paper, experiment is carried out with more than 100 satellite images. Finally the PASCO Satellite Ortho (PSO) satellite image is selected, which covers the areas around Mt. Kaimondake in Kagoshima, Japan. The experimental results reveal that the quality of the clustered partitions based on the internal criterion conclude, kernel fuzzy c means clustering algorithm performs better than fuzzy c means and k-means clustering methods. KeywordsSatellite image segmentation, kernel fuzzy clustering, kmeans clustering, image quality, Davies-Bouldin index, dunn index internal criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.