Abstract. Stable isotope data from lipid biomarkers and diatom silica recovered from lake sediment cores hold great promise for paleoclimate and paleohydrological reconstructions. However, these records rely on accurate calibration with modern precipitation and hydrologic processes and only limited data exist on the controls on the δD values for n-alkanoic acids from plant leaf waxes. Here we investigate the stable isotopic composition of modern precipitation, streams, lake water and ice cover, and use these data to constrain isotope systematics of the Lake El'gygytgyn Basin hydrology. Compound-specific hydrogen isotope ratios determined from n-alkanoic acids from modern vegetation are compared with modern precipitation and lake core top sediments. Multi-species net (apparent) fractionation values between source water (precipitation) and modern vegetation (e.g., ϵwax/precip mean value is −107 ± 12‰) agree with previous results and suggest a consistent offset between source waters and the δD values of alkanoic acids. We conclude that although there may be some bias towards a winter precipitation signal, overall δD values from leaf wax n-alkanoic acids record annual average precipitation within the El'gygytgyn Basin. A net fractionation calculated for 200-yr-integrated lake sediments yields ϵ30/precip = −96 ± 8‰ and can provide robust net "apparent" fractionation to be used in future paleohydrological reconstructions.
Mountain rivers, like alpine glaciers, are sensitive indicators of climate change. Some rivers may provide a more complete record of Holocene climate change than the glaciers in their headwaters. We illustrate these points by examining the record preserved in the upper part of the alluvial fill in the Nostetuko River valley in the southern Coast Mountains, British Columbia (Canada). Glacier advances in the upper part of the watershed triggered valley-wide aggradation and complex changes in river planform. Periods when glaciers were restricted in extent coincide with periods of incision of the valley fill and floodplain stability. As many as 10 overbank aggradation units are separated by peat layers containing tree roots and stems in growth position. Twenty-five radiocarbon ages on roots, tree stems and woody plant detritus in several of the peat layers closely delimit periods of aggradation. The oldest phase of aggradation occurred about 6500 years BP and coincides with the Garibaldi Advance documented elsewhere in the southern Coast Mountains. A second phase of aggradation, recorded by several units of clastic sediment, dates to about 2500 years BP, near the peak of the middle Neoglacial Tiedemann Advance. The third phase occurred shortly after 1400 years BP during or shortly after the First Millennium Advance, which has been recently documented in coastal British Columbia and Alaska. The most recent phase of aggradation began about 800 years BP and continued until recently. It coincides with the Little Ice Age, when glaciers in the Nostetuko River basin and elsewhere in the southern Coast Mountains attained their greatest Holocene size. Several periods of peat deposition during the Little Ice Age indicate periods of floodplain stability separated by brief intervals of floodplain aggradation that coincide with Little Ice Age glacier advances in western Canada. The results imply that the west fork of Nostetuko River is sensitive to upvalley glacier fluctuations and, indirectly, to relatively minor changes in climate.
Susceptibility measurements performed on initial short (3–16 m) cores taken from Lake El'gygytgyn exhibited a large range in values. This observation led to the suggestion of widespread magnetite dissolution within the sediments due to anoxic conditions within the lake. Rock magnetic properties and their comparison with magnetic susceptibility, Total Organic Carbon (TOC), and bulk δ<sup>13</sup>C<sub>org</sub> proxies in core LZ1029-7 provide an insight into the character of the magnetic minerals present within the lake and can further the understanding of processes that may be present in the newer long core sediments Susceptibility measurements (<i>χ</i>) of discrete samples corroborate the two order of magnitude difference seen in previous continuous susceptibility measurements (<i>κ</i>), correlating high values with interglacial periods and low values with glacial intervals. Hysteresis parameters defined the majority of the magnetic material to be magnetite of PSD size. TOC values increase while δ<sup>13</sup>C<sub>org</sub> values decrease in one section of LZ1029-7, which is defined as the Last Glacial Maximum (LGM), and help confine the age of the core to approximately 62 kyr. Increases in TOC during the most recent glacial interval suggest increased preservation of organic carbon during these times High TOC and low magnetic susceptibility during the LGM support the theory of perennial ice cover during glacial periods, which would lead to lake stratification and therefore anoxic bottom water conditions. Low temperature magnetic measurements also confirmed the presence of magnetite, but also indicated titanomagnetite, siderite and/or rhodochrosite, and vivianite were present. The latter three minerals are found only in anoxic environments, and further support the notion of magnetite dissolution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.