The objective of the current study was to evaluate the effects of aging on myoglobin chemistry of dark-cutting beef. Ten USDA Choice (mean pH = 5.6; normal pH beef) and 10 no-roll dark cutter (mean pH = 6.4) strip loins were obtained from a commercial packing plant within 3 d of harvest. Loins were cut into 4 sections, vacuum packaged, randomly assigned to 0-, 21-, 42-, and 62-d aging at 2°C in the dark. Following aging, loin sections were cut into 2.5-cm-thick steaks and were used to determine bloom development, oxygen consumption (OC), metmyoglobin reducing activity (MRA), and lipid oxidation. Surface color readings were measured using a HunterLab Miniscan XE Plus spectrophotometer. A significant muscle type × aging time interaction resulted for OC ( < 0.001). Normal pH steaks declined more ( < 0.001) in OC during aging than dark-cutting beef. On d 0, dark-cutting beef had a greater OC ( < 0.001) than normal pH beef. There was a significant muscle type × oxygenation time × aging period interaction for L* values, deoxymyoglobin (DeoxyMb), and oxymyoglobin (OxyMb). When dark-cutting sections were aged for 62 d, both 0 and 60 min bloom development L* values were greater ( < 0.0001) than 0 min dark-cutting sections aged for 21 or 42 d. At all aging periods, normal pH beef had greater OxyMb content and lower DeoxyMb ( < 0.0001) during bloom development than dark-cutting beef. An aging period × muscle type interaction was significant for % overall reflectance ( = 0.0017) and absorbance ( = 0.0038). Dark cutting and normal pH beef loin sections aged for 62 d had greater reflectance ( < 0.0001) than 21 d. On d 0, dark-cutting beef had greater ( < 0.0001) MRA than normal pH beef. There were no significant ( = 0.14) differences in MRA between 42 and 62 d between dark-cutting and normal pH beef. Dark cutting steaks had lower thiobarbituric acid reactive substances values ( < 0.0001) than normal pH steaks. The results indicate that characterizing the myoglobin chemistry during aging will help to design strategies to improve appearance of high pH beef.
The objective was to evaluate the effects of wet-aging, rosemary-enhancement, and modified atmospheric packaging on the color of dark-cutting beef during simulated retail display. No-roll dark-cutting strip loins ( = 12; pH > 6.0) were selected from a commercial packing plant within 3 d postharvest. Using a balanced incomplete block design, dark-cutting loins were sectioned in half, and assigned to 1 of 3 aging periods: 7, 14, or 21 d. After respective aging, each aged section was divided into 3 equal parts, and randomly assigned to 1 of 3 enhancement treatments: nonenhanced dark-cutting, dark-cutter enhanced with 0.1% rosemary, and dark-cutter enhanced with 0.2% rosemary. Following enhancement, steaks were randomly assigned to 1 of 3 packaging treatments: high-oxygen modified atmospheric packaging (HiOx-MAP; 80% O and 20% CO), carbon monoxide modified atmospheric packaging (CO-MAP; 0.4% CO, 69.6% N, and 30% CO), and polyvinyl chloride overwrap (PVC; 20% O). Instrumental and visual color measurements were recorded during 5 d simulated retail display. Lipid oxidation was determined utilizing the thiobarbituric acid reactive substances (TBARS) method. There was a significant packaging × enhancement × display time interaction for values and chroma ( 0.001). On d 0 of display, dark-cutting steaks enhanced with 0.1% and 0.2% rosemary and packaged in HiOx-MAP had greater ( 0.001) values and chroma than other dark-cutting packaging/enhancement treatments. A significant packaging × enhancement × display time interaction resulted for values ( 0.001). Dark-cutting steaks enhanced with 0.2% rosemary and packaged in HiOx-MAP was lighter ( 0.001; greater values) than other dark-cutting treatments on d 5 of display. There were no differences ( 0.34) in discoloration scores on d 5 among different dark-cutting treatments when steaks were packaged in HiOx- and CO-MAP. There was an aging period × enhancement × packaging interaction ( < 0.0033) for lipid oxidation. On d 0 of display, there were no differences ( 0.54) in TBARS values between different aging periods and enhancement treatments. Dark-cutting steaks enhanced with 0.2% rosemary had lower ( 0.001) TBARS values than 0.1% rosemary on d 5 when aged for 21 d and in HiOx-MAP. The results suggest that rosemary enhancement with CO- or HiOx-MAP has the potential to improve the surface color of dark-cutting beef.
The objective of this study was to evaluate the effects of rosemary/beef flavor enhancement and modified atmosphere packaging (MAP) on retail display color and palatability of beef longissimus lumborum muscle. Dark-cutting beef strip loins (n = 8; pH > 6.0) and USDA Low Choice beef strip loins (n = 5) were selected from a commercial packing plant within 72 h of harvest. Dark-cutting strip loins were divided into 2 equal sections and randomly assigned to either nonenhanced or rosemary/beef flavor–enhanced treatments. Dark-cutting enhanced loins were injected to 110% of their green weight with a rosemary/beef flavor enhancement to attain 0.1% rosemary, 0.5% salt, and 0.55% beef flavor in the final product. Six 2.54-cm-thick steaks were cut from nonenhanced USDA Choice, nonenhanced dark-cutting, and enhanced dark-cutting strip loins and randomly assigned to one of 3 packaging treatments: vacuum packaging, carbon monoxide MAP (0.4% CO, 69.6% N, and 30% CO2), and high-oxygen MAP (80% O2 and 20% CO2). Following 3-d retail display, instrumental color measurements were recorded, and one steak from each packaging type was evaluated by a trained sensory taste panel and another used to measure Warner-Bratzler shear force. Enhanced dark-cutting steaks packaged in high-oxygen MAP and carbon monoxide MAP had greater a* values (P < 0.0001) than dark-cutting steaks in vacuum packaging. Enhanced dark-cutting steaks were lighter (P < 0.0001, greater L* values) than nonenhanced dark-cutting steaks. Nonenhanced dark-cutting steaks exhibited a lower (P = 0.03) overall juiciness compared to enhanced dark-cutting steaks. Enhanced and nonenhanced dark-cutting steaks were more tender (P = 0.002) than the USDA Choice steaks. Enhanced dark-cutting steaks had higher (P = 0.006) sour flavor in vacuum packaging than other packaging types. The results suggest that rosemary/beef flavor enhancement has the potential to improve the surface color of dark-cutting beef while improving or maintaining palatability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.