The fractal compression of images allows to receive the greatest factor of compression, high image quality and resolution, which is not depending from initial image resolution. However, encoding process by this method has characterised by low speed that lay in the long search time for domain blocks. In this work question of increasing the speed of fractal compression of photo realistic images are considering.Keywords: fractal image compression, affine transform, IFS, image encoding, table method of search. FRACTAL ENCODING-DECODING ALGORITHMThe one ofpossible fractal image encoding circuit has offered by Jacquin [2,3], and is containing follow steps. Image is partitioned by non-overlapping square range blocks of size nxn. Next, for every range block, a similar but larger domain block is found. The domain blocks usually size 2nx2n and are located anywhere on the image. On the way eight mapping variants with attracting affine transforming used. It is turns of the image on corners 90, 180, 270 (-90) degrees concerning its centre and symmetry translation about orthogonal axis.Approximation accuracy has concluded by mean square error:Selected
A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed.
The possibility of designing a distributed fibre-optic sensor, allowing one to measure cryogenic temperatures (to liquid nitrogen boiling point), is experimentally demonstrated. The principle of operation of the sensor is based on measuring the intensity of boson peaks of Raman scattering in a fibre material, which are spaced by 1 to 3 THz from the probe frequency. The measurements are performed using a single-mode telecommunication fibre with a 15-μm-thick polyimide coating. The probe wavelength is 1.55 μm, the sensor spatial resolution is 4 m, and the averaging time is 60 s. Experiments are carried out in the temperature range of 75.6 – 79.6 K, with a temperature resolution of 0.5 K.
In the paper, the effect of spontaneous Brillouin scattering (SpBS) is analyzed as a noise source in distributed acoustic sensors (DAS). The intensity of the SpBS wave fluctuates over time, and these fluctuations increase the noise power in DAS. Based on experimental data, the probability density function (PDF) of the spectrally selected SpBS Stokes wave intensity is negative exponential, which corresponds to the known theoretical conception. Based on this statement, an estimation of the average noise power induced by the SpBS wave is given. This noise power equals the square of the average power of the SpBS Stokes wave, which in turn is approximately 18 dB lower than the Rayleigh backscattering power. The noise composition in DAS is determined for two configurations, the first for the initial backscattering spectrum and the second for the spectrum in which the SpBS Stokes and anti-Stokes waves are rejected. It is established that in the analyzed particular case, the SpBS noise power is dominant and exceeds the powers of the thermal, shot, and phase noises in DAS. Accordingly, by rejecting the SpBS waves at the photodetector input, it is possible to reduce the noise power in DAS. In our case, this rejection is carried out by an asymmetric Mach-Zehnder interferometer (MZI). The rejection of the SpBS wave is most relevant for broadband photodetectors, which are associated with the use of short probing pulses to achieve short gauge lengths in DAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.