In this research, a highly efficient desensitized FIR filter is designed to enhance the performance of digital filtering operation. With regard to FIR filter design, Multiplication and Accumulation component (MAC) forms the core processing entity. Half-band filters employing Ripple Carry Adder (RCA) based MAC structures have a sizeable number of logical elements, leading to high delay and high power consumption. To minimize these issues, a modified Booth multiplier encompassing SQRT Carry Select Adder (CSLA) based MAC component is proposed for the desensitized filter with reduced coefficients and employing lesser number of logical elements forgiving optimum performance with respect to delay and power consumption. The suggested FIR filter is simulated and assessed using EDA simulation tools from Modelsim 6.3c and Xilinx ISE. The results obtained from the proposed Desensitized FIR filter employing the modified booth multiplier with reduced complexity based SQRT CSLA show encouraging signs with respect to 12.08% reduction in delay and 2.2% reduction in power consumption when compared with traditional RCA based digital FIR filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.