The proteolytic activity of matrix metalloproteinases (MMPs) towards extracellular matrix components is held in check by the tissue inhibitors of metalloproteinases (TIMPs). The binary complex of TIMP-2 and membrane-type-1 MMP (MT1-MMP) forms a cell surface located 'receptor' involved in pro-MMP-2 activation. We have solved the 2.75 Å crystal structure of the complex between the catalytic domain of human MT1-MMP (cdMT1-MMP) and bovine TIMP-2. In comparison with our previously determined MMP-3-TIMP-1 complex, both proteins are considerably tilted to one another and show new features. CdMT1-MMP, apart from exhibiting the classical MMP fold, displays two large insertions remote from the active-site cleft that might be important for interaction with macromolecular substrates. The TIMP-2 polypeptide chain, as in TIMP-1, folds into a continuous wedge; the A-B edge loop is much more elongated and tilted, however, wrapping around the S-loop and the β-sheet rim of the MT1-MMP. In addition, both C-terminal edge loops make more interactions with the target enzyme. The C-terminal acidic tail of TIMP-2 is disordered but might adopt a defined structure upon binding to pro-MMP-2; the Ser2 side-chain of TIMP-2 extends into the voluminous S1Ј specificity pocket of cdMT1-MMP, with its Oγ pointing towards the carboxylate of the catalytic Glu240. The lower affinity of TIMP-1 for MT1-MMP compared with TIMP-2 might be explained by a reduced number of favourable interactions. Keywords: crystal structure/matrix metalloproteinase/ progelatinase A activator/proteinase complex/tissue inhibitor of metalloproteinases
Tumor necrosis factor-␣ (TNF␣) is a cytokine that induces protective inf lammatory reactions and kills tumor cells but also causes severe damage when produced in excess, as in rheumatoid arthritis and septic shock. Soluble TNF␣ is released from its membrane-bound precursor by a membrane-anchored proteinase, recently identified as a multidomain metalloproteinase called TNF␣-converting enzyme or TACE. We have cocrystallized the catalytic domain of TACE with a hydroxamic acid inhibitor and have solved its 2.0 Å crystal structure. This structure reveals a polypeptide fold and a catalytic zinc environment resembling that of the snake venom metalloproteinases, identifying TACE as a member of the adamalysin͞ADAM family. However, a number of large insertion loops generate unique surface features. The pro-TNF␣ cleavage site fits to the active site of TACE but seems also to be determined by its position relative to the base of the compact trimeric TNF␣ cone. The active-site cleft of TACE shares properties with the matrix metalloproteinases but exhibits unique features such as a deep S3 pocket merging with the S1 specificity pocket below the surface. The structure thus opens a different approach toward the design of specific synthetic TACE inhibitors, which could act as effective therapeutic agents in vivo to modulate TNF␣-induced pathophysiological effects, and might also help to control related shedding processes.Tumor necrosis factor-␣ (TNF␣) (1), a major immunomodulatory and proinflammatory cytokine, is synthesized as a 223-aa membrane-anchored precursor. The soluble form of TNF␣, comprising the C-terminal two-thirds of this precursor, is released into extracellular space by limited proteolysis at the Ala-76 3 Val-77 bond. The proteinase responsible for this cleavage, called TACE or ADAM 17, has recently been identified (2, 3) as a zinc-endopeptidase consisting of a multidomain extracellular part, an apparent transmembrane helix and an intracellular C-terminal tail. The extracellular part comprises an N-terminal pro domain, a 259-residue catalytic domain, and a Cys-rich moiety that has been hypothesized to be composed of a disintegrin-like, an epidermal growth factorlike, and a crambin-like domain (2). Its polypeptide sequence, in particular, that accounting for the catalytic domain, indicates some similarity with other metzincins (4, 5), especially with the adamalysins͞ADAMs (6-8) (a protein family comprising snake venom metalloproteinases and membraneanchored surface proteins containing an adamalysin-like catalytic domain) and the matrix metalloproteinases (MMPs). In comparison to enzymes in these families, however, the polypeptide chain of the TACE catalytic domain is clearly longer and is stable in the absence of calcium. Further, in contrast to the MMPs, TACE is relatively insensitive to the tissue inhibitor of metalloproteinases-1 (TIMP-1) (9) and exhibits a different inhibition pattern toward synthetic inhibitors (9-12). In contrast to the MMPs, TACE cleaves a 12-mer peptide spanning the cleavage site in...
Influenza nucleoprotein (NP) plays multiple roles in the virus life cycle, including an essential function in viral replication as an integral component of the ribonucleoprotein complex, associating with viral RNA and polymerase within the viral core. The multifunctional nature of NP makes it an attractive target for antiviral intervention, and inhibitors targeting this protein have recently been reported. In a parallel effort, we discovered a structurally similar series of influenza replication inhibitors and show that they interfere with NP-dependent processes via formation of higherorder NP oligomers. Support for this unique mechanism is provided by site-directed mutagenesis studies, biophysical characterization of the oligomeric ligand:NP complex, and an X-ray cocrystal structure of an NP dimer of trimers (or hexamer) comprising three NP_A:NP_B dimeric subunits. Each NP_A:NP_B dimeric subunit contains two ligands that bridge two composite, protein-spanning binding sites in an antiparallel orientation to form a stable quaternary complex. Optimization of the initial screening hit produced an analog that protects mice from influenza-induced weight loss and mortality by reducing viral titers to undetectable levels throughout the course of treatment.antiinfluenza | oligomerization | polymerase inhibitor | protein-protein interaction | cooperative inhibition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.