contributed equally to this work In¯ammatory cytokines (IC) activate endothelial cell adhesiveness for monocytes and inhibit endothelial cell growth. Here we report the identi®cation of the human guanylate binding protein-1 (GBP-1) as the key and speci®c mediator of the anti-proliferative effect of IC on endothelial cells. GBP-1 expression was induced by IC, downregulated by angiogenic growth factors, and inversely related to cell proliferation both in vitro in microvascular and macrovascular endothelial cells and in vivo in vessel endothelial cells of Kaposi's sarcoma. Experimental modulation of GBP-1 expression demonstrated that GBP-1 mediates selectively the anti-proliferative effect of IC, without affecting endothelial cell adhesiveness for monocytes. GBP-1 anti-proliferative activity did not affect ERK-1/2 activation, occurred in the absence of apoptosis, was found to be independent of the GTPase activity and isoprenylation of the molecule, but was speci®cally mediated by the C-terminal helical domain of the protein. These results de®ne GBP-1 as an important tool for dissection of the complex activity of IC on endothelial cells, and detection and speci®c modulation of the IC-activated non-proliferating phenotype of endothelial cells in vascular diseases.
During angiogenesis and inflammatory processes, endothelial cells acquire different activation phenotypes, whose identification may help in understanding the complex network of angiogenic and inflammatory interactions in vivo. To this goal we investigated the expression of the human guanylatebinding protein (GBP)-1 that is highly induced by inflammatory cytokines (ICs) and, therefore, may characterize IC-activated cells. Using a new rat monoclonal antibody raised against GBP-1, we show that GBP-1 is a cytoplasmic protein and that its expression in endothelial cells is selectively induced by interferon-␥, interleukin-1␣, interleukin-1, or tumor necrosis factor-␣, but not by other cytokines, chemokines, or growth factors. Moreover, we found that GBP-1 expression is highly associated with vascular endothelial cells as confirmed by the simultaneous detection of GBP-1 and the endothelial cell-associated marker CD31 in a broad range of human tissues. Notably, GBP-1 expression was undetectable in the skin, but it was highly induced in vessels of skin diseases with a high-inflammatory component including pso-
Synthesis of collagen by chondrocytes was studied by immunofluorescence using antibodies specific for type I, II and III collagen. The following tissues and culture conditions were chosen for this immunohistological study: normal articular cartilage, epiphyseal growth cartilage, cartilage undergoing osteoarthrotic degeneration, suspension culture and monolayer culture. While type II collagen is the unique collagen all over hyaline cartilage, type I collagen is produced by hypertrophic chondrocytes in the growth plate. In addition, chondrocytes in osteoarthrotic areas of articular cartilage synthesize type I collagen. Under in vitro culture conditions, chondrocytes initially product type II collagen and synthesize later on type I collagen. The change of synthesis from type II to type I collagen is more rapid in monolayer than in suspension culture. It is concluded that the presence of matrix compounds and the cellmatrix interaction as well are necessary to maintain synthesis of type II collagen in chondrocytes. Alterations in the cell-matrix interactions are shown to occur in the hypertrophic zone of the epiphyseal growth plate, in cartilage undergoing osteoarthrotic degeneration as well as in chondrocytes grown in culture. Thus, change in the control of gene activity may subsequently lead to change in collagen synthesis. It is possible that the synthesis of type I collagen, which cannot fulfil the physiological function of a structural element in cartilageneous tissue, is a crucial factor in the process of osteoarthrosis.
The HIV-1 RNase H can be prematurely activated by oligodeoxynucleotides targeting the highly conserved polypurine tract required for second strand DNA synthesis. This inhibits retroviral replication in cell-free HIV particles and newly infected cells. Here we extend these studies to an in vivo model of retroviral replication. Mice that are chronically infected with the spleen focus-forming virus and treated with oligodeoxynucleotides that target the polypurine tract, exhibit either transient or long-term reductions in plasma virus titer, depending on the therapeutic regimen. Treatment prior to, during or shortly after infection can delay disease progression, increase survival rates and prevent viral infection. This strategy destroys viral RNA template in virus particles in serum as well as early retroviral replication intermediates in infected cells. As it targets events common to the replication cycle of all retroviruses, this approach may be broadly applicable to retroviruses of medical and agricultural importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.